COMMONWEALTH OF MASSACHUSETTS
DEPARTMENT OF PUBLIC UTILITIES

Petition of NSTAR Gas Company d/b/a Eversource Energy for Approval of an Increase in Base Distribution Rates and Performance-Based Regulatory Plan for Gas Service Pursuant to General Laws Chapter 164, §94 and 220 C.M.R. §§ 5.00, et seq.

DIRECT TESTIMONY OF
WILLIAM J. AKLEY AND DOUGLAS P. HORTON

Case Overview
Performance-Based Regulatory Plan

On behalf of

NSTAR Gas Company
d/b/a Eversource Energy

November 8, 2019
COMMONWEALTH OF MASSACHUSETTS
DEPARTMENT OF PUBLIC UTILITIES

DIRECT TESTIMONY OF
WILLIAM J. AKLEY AND DOUGLAS P. HORTON

Table of Contents

I. INTRODUCTION ... 1
II. OVERVIEW .. 8
III. NSTAR GAS ORGANIZATIONAL STRUCTURE .. 17
IV. OPERATING FOCUS NOW AND IN THE FUTURE .. 21
 A. Investments in People .. 36
 B. Investments in Process ... 55
 C. Investments in Technology ... 59
V. PROGRESS ON EMISSIONS REDUCTIONS ... 65
 A. Reducing GHG Emissions on the Distribution System ... 66
 B. Renewable Natural Gas.. 70
 C. Environmentally Responsible Gas Supply... 74
VI. DESCRIPTION OF THE PROPOSED PBR PLAN ... 79
VII. SCORECARD METRICS ... 99
 A. Safety and Reliability Metrics .. 104
 B. Emissions Reduction Scorecard Metrics ... 110
VIII. CONCLUSION.. 113
I. INTRODUCTION

Q. Mr. Akley, please state your name and business address.
A. My name is William J. Akley. My business address is 247 Station Drive, Westwood, Massachusetts 02090.

Q. By whom are you employed and in what capacity?
A. I am President of the Eversource Energy gas distribution business, employed by Eversource Energy Service Company ("Eversource Service Company" or "ESC"). The Eversource Energy gas distribution business encompasses NSTAR Gas Company d/b/a Eversource Energy ("NSTAR Gas" or "Eversource" or the "Company") and Yankee Gas Services Company ("Yankee Gas"). ESC provides financial, administrative and technical support to the direct and indirect subsidiary companies of Eversource Energy. My current duties include oversight of the day-to-day operations of the gas distribution business and other gas-related subsidiaries operating in Connecticut and Massachusetts. My oversight duties include all maintenance, construction and emergency response activities, as well as oversight of the Eversource Energy liquefied...
natural gas (“LNG”) operations and all customer meter-service activities across the gas
distribution businesses.

Q. Please describe your educational background and professional experience.

A. I earned a Bachelor of Science degree in mechanical and industrial engineering from
Clarkson University in Potsdam, New York in 1983. In 1987, I earned a Master of
Business Administration degree from Adelphi University in Garden City, New York.
I joined the Brooklyn Union Gas Company in 1983 as a management trainee and held
a series of successively responsible positions in the gas business operated by KeySpan
Corporation (“KeySpan”), including project and design engineering, dispatch, field
operations, corrosion engineering, leak survey, budget support and contract
administration. In 2002, I was named Vice President for the KeySpan organization
with responsibility for Real Estate, Property Services and Security. In 2004, I was
named Vice President of Gas Operations - Long Island. In 2007, I was promoted to
Senior Vice President, U.S. Gas Operations and Construction for National Grid USA’s
U.S. gas distribution business, following National Grid’s acquisition of KeySpan. I left
this position in June 2014 and commenced my current position with Eversource Energy
in November 2014.

Q. Have you previously testified before the Massachusetts Department of Public
Utilities?

A. Yes. I testified before the Massachusetts Department of Public Utilities (the
testified before the Department on behalf of National Grid in Boston Gas Company, Colonial Gas Company and Essex Gas Company, D.P.U. 10-55 (2010) regarding operations and maintenance practices used by National Grid to provide safe and reliable service to customers. I also testified in Oversight Investigation into the National Grid and KeySpan Merger, D.P.U. 07-30 (2010), regarding the performance of the gas distribution business following the KeySpan/National Grid USA transaction.

Q. Mr. Horton, please state your name, position and business address.

A. My name is Douglas P. Horton. I am Vice President, Distribution Rates and Regulatory Requirements, employed by Eversource Service Company. My business address is 247 Station Drive, Westwood, Massachusetts 02090.

Q. What are your principal responsibilities in this position?

A. As Vice President, Distribution Rates and Regulatory Requirements, I am responsible for the oversight, coordination and implementation of revenue requirement calculations and distribution rates for the Eversource Energy operating companies in Massachusetts, Connecticut and New Hampshire, including NSTAR Gas. In addition, I have the overall responsibility for regulatory interfaces for all revenue requirement-related filings before the Department.

Q. Please summarize your professional and education background.

A. I graduated from Bentley College (now Bentley University) in Waltham, Massachusetts in 2003 with a Bachelor of Science degree. In 2007, I graduated from
the Bentley University McCallum Graduate School of Business with a Master of
Business Administration. I joined NSTAR Electric Company as a Senior Financial
Planning Analyst in August 2007 and was promoted to Project Manager, Smart Grid,
in March 2010. Following the merger of NSTAR and Northeast Utilities in 2012, I
was promoted to Manager of Revenue Requirements for Massachusetts. I was then
promoted to Director, Revenue Requirements for Massachusetts, in February 2015. I
assumed my current role as Vice President, Distribution Rates and Regulatory
Requirements in December 2018.

Q. Have you previously testified before the Department?

A. Yes. Most recently, I sponsored testimony in the Department’s investigation into the
federal income tax rate change in D.P.U. 18-15. I testified on behalf of NSTAR Electric
d/b/a Eversource Energy (“NSTAR Electric”) in its most recent base distribution rate
proceeding in D.P.U. 17-05. I also testified in the petition for approval of a gas service
agreement between NSTAR Gas and Hopkinton LNG Corp. (“HOPCO”) in D.P.U. 14-64, and in support of the HOPCO demand charge in the Company’s last base-rate
proceeding in D.P.U. 14-150, among other proceedings.

Q. What is the purpose of your testimony?

A. Our joint testimony is designed to serve three purposes. First, our testimony provides
the Department with an in-depth perspective on the current operating environment for
natural gas local distribution companies and the significant challenges for gas
companies that exist in this environment. These challenges revolve around two
dynamics shaping the future of the natural gas industry across the U.S., which are the urgent need to achieve the utmost level of public safety and reduce methane emissions.

In this context, the full attention of management, and its commitment of resources, is appropriately focused on the Gas Customer. Although customers continue to prefer gas service where that service is reasonably available, *gas customers do not have to be gas customers*. It is the customer that is connected to the distribution system; it is the customer who relies on the availability and safety of the gas delivered to their homes; it is the customer who is able to employ strategies to use gas conservatively; and it is the customer community that is demanding that the Company work harder to reduce gas emissions. Therefore, it is the Gas Customer who will ultimately decide whether the Company is meeting the challenges existing in today’s operating environment.

Eversource Energy is acutely aware that, if customer needs and preferences for safe, reliable, reasonable cost and environmentally responsible gas service cannot be fulfilled, the Company’s business will decline. Therefore, these industry dynamics and customer trends are the prevailing influence on the Company’s proposals in this case.

Second, our testimony provides an overview of the principal components of the Company’s filing in this case, which are a requested change in base distribution rates and the proposed implementation of a performance-based regulatory (“PBR”) plan with a five-year initial term and provision for extension. The PBR Plan is designed to:

(1) advance the customer objectives of safety, reliability, reduced emissions and
reasonable cost gas service; (2) provide strong incentives to the Company to control
costs, particularly where efforts to heighten safety and emissions reductions are causing
increased costs; and (3) establish a construct that will enable the Company to focus on
its operations while furthering the safety of the system and the success of the
Commonwealth’s energy policies. As part of the PBR Plan, the Company is proposing
that the Department allow recovery of two demonstration projects designed to test the
feasibility of natural gas demand-reduction initiatives and to assess the viability of
geothermal distribution. The Company is also proposing to institute a series of new
gas safety initiatives and related performance metrics that would be reported to
interested stakeholders via an annual scorecard.

Lastly, our testimony discusses how the PBR Plan will enable the Company to achieve
its critical public-service obligations over the next five years in the context of industry
dynamics requiring the Company to strive for the utmost level of public safety and
reductions in methane emissions. Almost 300,000 customers in Massachusetts rely on
natural gas service from Eversource Energy to meet the energy needs of their homes
and businesses—and will do so into the future. The Company’s obligations to its
customers make it incumbent upon the Company to find a regulatory structure that will
allow it to further intensify its efforts to serve customers with the utmost safety and
environmental responsibility, while maintaining the financial integrity needed to
support this effort. As described in this testimony, NSTAR Gas is presenting the
Department with a set of proposals that represent an integrated, regulatory structure to achieve this critical objective.

Q. Are you presenting any exhibits in addition to your testimony?
A. Yes. We are presenting one exhibit as part of our testimony in this case, which is Exhibit ES-WJA/DPH-2 (Organizational Chart and Summary of Incremental Employees).

Q. How is your testimony organized?
A. Our testimony is organized as follows: Section I is the introduction. Section II provides an overview of the Company’s filing and identifies the witnesses that are supporting the Company’s proposals. In Section II, Mr. Akley and Mr. Horton discuss the reasons that the PBR Plan is the appropriate regulatory structure to allow the Company to amplify its efforts to serve customers with the utmost safety and environmental responsibility, while maintaining financial integrity. In Sections III and IV, Mr. Akley discusses the NSTAR Gas organizational structure and operating focus now and into the future. In Section V, Mr. Akley discusses the Company’s progress with the emissions reductions and sustainability efforts the Company is working on with respect to its gas supply resource portfolio. In Section VI, Mr. Horton discusses the components of the Company’s proposed PBR Plan. In Section VII, Mr. Akley and Mr. Horton discuss the Company’s proposed performance metrics. Section VIII is the conclusion.
II. OVERVIEW

Q. Please describe the primary elements of the Company’s filing in this proceeding.

A. In this proceeding, the Company is requesting a change in its base distribution rates and implementation of a five-year PBR Plan that would adjust rates annually in accordance with a revenue per customer cap formula to be approved by the Department. If approved by the Department, the Company would commit to refrain from requesting a subsequent change in base rates for a minimum five-year period. The Company has also incorporated elements into the PBR Plan that may allow it to continue past the five-year mark, as permitted by Massachusetts law. The Department has implemented PBR plans or PBR-like mechanisms where it has found that this type of regulatory method better satisfies public policy goals and statutory obligations. Massachusetts Electric Company and Nantucket Electric Company, each d/b/a National Grid, D.P.U. 18-150, at 45-74 (2019); NSTAR Electric Company and Western Massachusetts Electric Company, D.P.U. 17-05, at 370-414 (2017); Boston Gas Co., D.P.U. 96-50 (Phase I), at 261 (1986); Incentive Regulation Investigation, D.P.U. 94-158, at 42-43 (1995); NYNEX Price Cap, D.P.U. 94-50, at 139 (1995).

As integral parts of the PBR Plan, the Company is proposing to initiate two clean energy demonstration projects and to establish reportable scorecard metrics to drive the targeted achievement of several policy goals important to the Department and the Commonwealth. The demonstration projects are designed to identify ways to harness reductions in gas demand and to utilize geothermal resources as a substitute and
(potentially) a supplement to the use of natural gas in serving customers. The scorecard
metrics will provide stakeholders with a transparent view of the Company’s
performance and assist in demonstrating the customer benefits arising during the term
of the Company’s five-year PBR Plan.

Q. What type of scorecard metrics is the Company proposing in this proceeding?
A. As discussed below, the Company is proposing a series of 12 scorecard metrics,
organized by three high-level categories: Safety and Reliability; Customer Satisfaction
and Engagement; and Emission Reductions. The Company’s proposed scorecard
metrics are aligned with several of the Department’s policy objectives and will allow
the Department and stakeholders to monitor the Company’s progress on important
public policy objectives during the term of the PBR Plan. Below, our testimony
provides detail on the Safety and Reliability and Emission Reductions metrics. The
Company’s proposed Customer Satisfaction and Engagement metrics are discussed in
the joint testimony of Company Witnesses Conner and Goldman.

Q. Please describe the Company’s request for a change in base rates.
A. The Company is requesting that the Department approve new base rates to address a
net revenue deficiency calculated by the Company to be approximately $38 million.
This represents an increase of approximately 19 percent in total distribution revenue, if
approved without change. This proposed revenue change is based on a test year-ending
December 31, 2018, adjusted for known and measurable changes to test year amounts
for ratemaking purposes. The revenue requirement is based on a total rate base of $895
million and an overall weighted cost of capital of 7.68 percent, reflecting a return on
equity (“ROE”) of 10.45 percent. The total rate base presented in this case incorporates
the addition of nearly $640 million in gross plant additions plus cost of removal
expenditures, since the Company’s last general base distribution rate case in D.P.U.
14-150.

The Company’s current distribution rates are insufficient to recover the cost of
providing safe and reliable service to customers, including a fair return on the assets
devoted to utility service. Accordingly, the Company now finds it necessary to petition
the Department for review and determination of an increase in base distribution
revenues to support utility operations. The Company’s filing includes the results of a
revenue requirement calculation; a lead-lag study; a depreciation study; an allocated
cost of service study; a marginal cost study; and other testimony and exhibits in support
of the Company’s proposals in this case. If the Company’s proposals are approved
without modification, the typical residential heating customer would see a total annual
bill impact of 8.6 percent, which equates to an average monthly increase of $9.03. For
commercial and industrial (“C&I”) customers, the average impact would range from 1
percent to 8.1 percent, depending on the respective rate class.

Q. Why is the Company’s filing necessitated at this time?

A. The Company’s request for a change in base distribution rates is necessitated by several
factors; but is primarily due to the substantial level of capital investment that the
Company has made since those authorized in D.P.U. 14-150. In addition to the cost of
carrying capital investment not yet recovered through rates, the Company continues to experience upward pressure on operating and maintenance ("O&M") expense associated with the cost of labor and materials, driven by accelerated capital replacement and safety and reliability-related investments, and other products and services needed to operate and reinforce the system.

Another significant factor that is motivating the Company to submit this petition now is that NSTAR Gas anticipates a step-up in safety requirements imposed through legislation and regulations as a result of the Merrimack Valley incident and the various investigations flowing therefrom. NSTAR Gas is filing now so that the undivided attention of all NSTAR Gas personnel will be focused on embedding new and continuing safety initiatives into gas operations over the next five years and beyond.

With a 10-month suspension period, the Company work effort associated with a base-rate petition is in the range of 18-24 months, requiring attention of the resources and expertise of the entire gas business including the managers of gas operations. Therefore, NSTAR Gas has made the decision to head off this diversion of resources over the next five years by making this filing now and requesting that the Department put in place a multi-year rate plan that will support the Company’s critical efforts to meet its obligations to public safety and sustainability without undermining the Company’s financial integrity. Without this multi-year rate plan in place, the Company’s expectation is that it will need to treat every other year as a test year and to file base-rate petitions accordingly so that the Company’s allowed cost recovery
remains reasonably aligned with investment and operating costs necessary to operate the system safely.

Q. Why does the Company view a performance-based regulatory plan to be the appropriate regulatory structure in today’s operating environment?

A. The Department has found that PBR provides a utility company more flexibility to address a changing operating environment and higher customer expectations.\(^1\)

Consistent with this philosophy, the Company is seeking to engage in a multi-year, performance-based rate plan to take a meaningful step forward in addressing the confluence of factors that are substantially and irrevocably changing the operating environment for local natural gas distribution companies. The Company has devoted significant study and analysis to develop a proposed regulatory structure that is adequate to support utility operations; is administratively efficient; benefits customers in terms of continuing to promote a high level of safety and service reliability; and provides strong incentives to the Company to control costs.

The Company’s proposed PBR Plan would adjust rates annually through a performance-based ratemaking mechanism (“PBRM”) that utilizes a “revenue per customer cap” formula. The PBRM formula is derived through economic analysis of utility cost trends as indicated by measures of inflation, input prices and total factor productivity. The specific revenue per customer cap formula that the Company is

proposing is discussed in the joint testimony of Company Witnesses Julia Frayer and Marie Fagan. Ms. Frayer and Ms. Fagan have performed the in-depth economic research and analysis supporting the Company’s proposed revenue per customer cap formula and her testimony details its methodological underpinnings. The revenue per customer cap formula is designed to parallel, and work in tandem with, the revenue decoupling mechanism (“RDM”) that the Department approved in D.P.U. 14-150.

The PBR Plan, with operation of the annual PBRM, is a better fit than the current ratemaking methodology for the Company in terms of providing the Company with the revenue support that it needs to address the challenges of today’s operating environment without diverting focus from the operation of the system. As discussed below, the Company anticipates that the principal cost driver over the next five years will be the substantial amount of capital investment needed for system upgrades outside of the Gas System Enhancement Program (“GSEP”). For example, as discussed below, if the Department approves the Company’s PBR Plan as filed, the Company projects the annual increases in revenue growth would be in the range of $8 million; however, the annual revenue requirement associated with the $100+ million of non-GSEP annual capital investment planned over the term of the PBR Plan will be in the range of $13-15 million, conservatively calculated. Increases in operating costs will also occur, although the Company will be working diligently to maintain the most efficient cost platform possible while meeting safety and reliability requirements. Therefore, implementation of the PBR Plan in conjunction with the GSEP mechanism will require
the Company to surrender its right to a base-rate proceeding for at least a five-year term even though the annual PBR revenue falls short of the annual revenue requirement on incremental capital investment. This dynamic will create a strong challenge for the Company in relation to its management of O&M expense and capital expenditures.

Thus, the greater incentives for cost control inherent in the PBR framework and the need for flexibility in relation to O&M and capital cost planning are factors motivating the Company to request the implementation of the proposed PBR Plan (rather than capital cost recovery) as the most effective tool to address the drivers of change in the business and operating environment.

Q. Would you please identify the witnesses presented by the Company in this proceeding?

A. Yes. In addition to this joint testimony, the Company is submitting testimony, analysis and documentation from the following witnesses in support of its petition:

- Penelope M. Conner and Michael R. Goldman: Ms. Conner is the Chief Customer Officer and Senior Vice President of the Customer Group for Eversource Service Company. Mr. Goldman is the Director, Regulatory, Evaluation & Support, Energy Efficiency for Eversource Service Company. Their joint testimony presents the Company’s customer philosophy and sustainability vision and sets out the details of two proposed demonstration projects, which are designed to assess the viability of a natural gas demand reduction program and geothermal distribution.
Julia Frayer and Marie Fagan: Julia Frayer is a partner and a Managing Director of London Economics International LLC (“LEI”). Marie Fagan is a Managing Consultant and Lead Economist at LEI. Ms. Frayer and Ms. Fagan’s testimony discusses the methodology and results associated with the Total Factor Productivity (“TFP”) Study, which is the basis of the Company’s proposed “X factor” component of the PBRM. Ms. Frayer and Ms. Fagan also presents LEI’s benchmarking study relating to the Company’s cost performance and respective ranking within the natural gas utility industry group used for the TFP Study.

Douglas P. Horton and Ashley N. Botelho: Mr. Horton is the Vice President, Distribution Rates and Regulatory Requirements. Ms. Botelho is the Manager of Revenue Requirements, Massachusetts, employed by ESC. Their joint testimony presents the Company’s revenue requirement analysis and revenue-deficiency calculation for NSTAR Gas, among other revenue requirement-related proposals.

Robert B. Hevert: Mr. Hevert is Managing Partner, ScottMadden, Inc. The testimony of Mr. Hevert presents the Company’s proposed ROE, cost of capital and capital-structure analysis.

Sasha Lazor: Mr. Lazor is Director, Compensation for Eversource Service Company. The testimony of Mr. Lazor presents the Company’s employee
compensation programs, including base and variable pay elements of compensation.

- **Michael P. Synan**: Mr. Synan is Director, Benefits Strategy for Eversource Service Company, presenting testimony on the Company’s employee benefits and discussing the underlying rationale and assumptions related to these costs.

- **John J. Spanos**: Mr. Spanos is Senior Vice President, Gannett Fleming Valuation and Rate Consultants. The testimony of Mr. Spanos presents the Company’s depreciation study in support of the Company’s proposed depreciation rates in this proceeding.

- **David Heintz**: Mr. Heintz is Vice President, Concentric Energy Advisors. The testimony of Mr. Heintz presents the allocated cost of service study for the basis of the Company’s rate design.

- **Melissa Bartos**: Ms. Bartos is Assistant Vice President, Concentric Energy Advisors. The testimony of Ms. Bartos presents the NSTAR Gas marginal cost study, which was prepared in accordance with the Department’s directives and standards related to marginal cost studies.

- **Richard D. Chin**: Mr. Chin is the Manager of Rates for the Eversource Energy operating affiliates in Massachusetts, including NSTAR Gas. Mr. Chin
presents the Company’s proposed distribution rates and rate design. His testimony includes rate design proposals and bill-impact analysis.

- **Richard D. Chin and Lisa Cullen**: Ms. Cullen is the Manager of Gas Supply Operations for NSTAR Gas and Yankee Gas Company. Mr. Chin and Ms. Cullen’s joint testimony presents the Company’s proposed changes to its tariffs.

- **Leanne M. Landry and Thomas C. Desrosiers**: Ms. Landry is the Director, Budget and Investment Planning for ESC. Mr. Desrosiers is the Manager Investment Planning for ESC. The joint testimony of Ms. Landry and Mr. Desrosiers presents project documentation for capital additions made since D.P.U. 14-150. Their testimony also describes the capital planning and approval process in place to manage the capital expenditures for NSTAR Gas.

III. NSTAR GAS ORGANIZATIONAL STRUCTURE

Q. Mr. Akley would you please provide a brief description of the Company?

A. NSTAR Gas is a regulated public utility incorporated in Massachusetts in 1851. NSTAR Gas currently operates as a wholly-owned subsidiary of Yankee Energy System, Inc. (“Yankee Energy”). NSTAR Gas is engaged in the retail distribution and sale of natural gas to approximately 296,000 customers in 51 communities in central and eastern Massachusetts, covering 1,067 square miles. Some of the larger communities served by NSTAR Gas include Cambridge, New Bedford, Plymouth, Worcester, Framingham, Dedham and the Hyde Park area of Boston. Natural gas
supply services are provided to NSTAR Gas during the winter heating season by HOPCO, another wholly-owned subsidiary of Yankee Energy.

Q. What is the overall operating philosophy of Eversource Energy in relation to its gas distribution operations?

A. Eversource Energy is a mission-driven organization grounded in the voice of the customer. Within the organization, there is an embedded cultural philosophy that values leadership, the provision of safe and reliable service to customers, constant attention to service-quality, and deep appreciation of employees and the skill and talent they bring to the mission. Eversource Energy strongly encourages employees to engage, listen and learn from customers, colleagues and other industry participants; and to incorporate that learning into everyday work so the customer is served with the highest expertise and dedication in the industry.

Within Gas Operations, there is careful and consistent attention to detail. Gas Operations relies on standardized construction practices, rigorous protocols for training, testing and operator qualifications and comprehensive quality assessment and quality control (“QA/QC”) processes, among other strategies, to assure work is performed correctly and safely. In particular, the Company’s QA/QC function introduces a second, intensive level of internal review to assure adherence to applicable standards and compliance requirements. Fundamentally, experts are in charge, i.e., it is not enough to lead, but also Eversource leaders must be experts in the work tasks within their domain. This means that, from top to bottom, a single mindset is in place,
focused intently on getting the job done safely, effectively and at a reasonable cost with minimal environmental impact.

Q. Mr. Akley, please describe the leadership team of the Eversource Energy gas-distribution business.

A. Effective November 10, 2014, I was named President of the Eversource Energy Gas Distribution group. As shown in the high-level organization chart provided as Exhibit ES-WJA/DPH-2, on page 1, I have three direct reports: Kevin J. Kelley, Vice President – Gas Operations; Gregory J. Hill, Vice President – Gas Engineering; and Darrin K. Wertz, Director Pipeline Safety and Quality.

Mr. Kelley has been an Eversource Energy employee for over 29 years and is responsible for various operational functions including but not limited to Construction, Maintenance, Meter Services, Project Management and Dispatch/Technical Services.

Mr. Hill joined Eversource Energy in 2017. He is responsible for all engineering matters associated with the Company’s gas business; LNG operations and LNG capital projects involving three operating facilities located in Connecticut and Massachusetts; gas emergency preparedness; and the gas-control activities for the gas distribution business.

Mr. Wertz has 13 years of utility experience and joined Eversource Energy in 2015. He is responsible for the Company’s Pipeline Safety Management Systems and Quality Assurance/Quality Control.
These three individuals are responsible for functional areas that play vital and interrelated roles in achieving the central mission of the Company, which is to provide safe and reliable service to customers at a reasonable cost. This leadership team and the Company’s organizational structure facilitate the Company’s ability to meet growing operating challenges, including increasing compliance requirements geared toward ensuring continued safe operation of the system and the accelerated replacement of aging, leak-prone infrastructure.

Q. How does the Company’s organizational structure assist in meeting pipeline safety regulatory requirements?

A. The Company’s Gas Operations Group is responsible for system repair and maintenance activities, as well as new construction and replacement of leak-prone mains and services. The Gas Operations Group is also responsible for performing the work associated with pipeline safety requirements and is organized on a functional basis centered around: Maintenance, Construction, Meter Services, Project Management and other compliance activities such as facility mark-outs, corrosion control and leak management activities, among other functions.

The Engineering Group is responsible for gas system operations, Instrumentation and Regulation (“I&R”) and LNG, as well as for defining the compliance activities and system replacement work needed to be completed in any given calendar year or regulatory driven timeframe. The Gas Engineering Group is also responsible for
ensuring that gas policies, procedures, and standards comply with all state and federal
regulations, as well as gas system operations, I&R and LNG operations.

The Pipeline Safety and Quality Group is responsible for implementation of the
Pipeline Safety Management System as well as QA/QC of gas projects.

IV. OPERATING FOCUS NOW AND IN THE FUTURE

Q. Mr. Akley, what are the Company’s most important priorities from an operating
perspective?

A. The natural gas business has experienced many changes over the last several years.
However, the guiding principle driving all decision making in the natural gas
distribution business is public safety. This bedrock principle has existed for my entire
career in the gas industry and remains a central focus for NSTAR Gas today and for
the future. At Eversource Energy, our shared commitment to “Safety First and Always”
is a principle and mindset that is weaved into the fabric of every job and every task—
whether in the field or in the office. The gas industry cannot survive without confidence
that the system is safe, and this has always been true. Accordingly, safety is the highest
priority for Eversource Energy.

The Company’s strong focus on continuing to improve the safety and reliability of the
system requires prioritization of replacement programs for aging infrastructure and
rigorous efforts to maintain full compliance with federal and state pipeline safety
regulations. The Company’s efforts in this regard were furthered by the legislature’s
initiative in 2014 to put in place An Act Relative to Natural Gas Leaks (the “Gas Leaks
Act”), which permitted local distribution companies (“LDCs”) to submit to the Department annual plans to repair or replace aged natural gas infrastructure. On October 31, 2014, NSTAR Gas, along with the other LDCs, submitted the first GSEP filings setting forth plans for replacing leak-prone infrastructure during the 2015 construction year. Pursuant to the Gas Leaks Act, each gas company, including NSTAR Gas, established a timeline to replace all leak-prone infrastructure on an accelerated basis, specifying an annual replacement pace and a program end date. On April 30, 2015, the Department approved each gas company’s GSEP, thereby commencing accelerated pipeline replacement across the Commonwealth and corresponding dramatic increases in capital investment and O&M activity.

Also, in 2014, Eversource petitioned the Department for approval of a Gas Service Agreement (“GSA”) between NSTAR Gas and HOPCO that was designed, among other things, to facilitate a substantial refurbishment of the HOPCO facilities. The HOPCO facilities represent approximately 40 percent of the Company’s peak day supply. This asset is particularly critical to the continued safe and reliable operation of the system and provision of service to customers because there are no significant pipeline expansions on the planning horizon for the region. Moreover, LDC demand is highest during the winter-heating season, which leaves limited capacity available in the secondary market, causing price volatility during cold weather periods as wholesale entities vie for available gas supplies. As a result, the HOPCO facilities stand as an important resource for NSTAR Gas customers both in terms of the availability of a safe
and reliable supply source, and in terms of being able to mitigate the impacts of price volatility in the New England.

The HOPCO facilities required substantial capital upgrades due to their advancing age. The nature and scope of these upgrades precluded construction and implementation in a single year, and instead required a phased project approach over a multi-year period. In D.P.U. 14-64, the Department concluded that the HOPCO facilities are an important and necessary component of the Company’s resource portfolio and approved the proposed GSA with modifications. NSTAR Gas Company d/b/a Eversource Energy, D.P.U. 14-64, at 33, 73-75 (April 29, 2015). The refurbishment continues at both the Main Facility (Hopkinton) and Acushnet Facility and the component projects are in various phases of development. These projects include civil and structural improvements, electrical and control system upgrades, building replacements and other system improvements. The Company’s current assessment of the proposed refurbishment program’s budget and schedule suggests that refurbishment projects are expected to continue through 2021, subject to permitting and other unforeseen operational constraints.

Q. What impacts has GSEP had on the Company’s business?
A. The GSEP framework established in 2014 has provided a critical pathway to accelerate the installation of modern, safe, and environmentally sound natural gas distribution systems in the Commonwealth of Massachusetts. The pace of capital work completed since 2014 has been unprecedented. In addition to the safety, reliability and
environmental benefits associated with NSTAR Gas infrastructure replacement efforts, GSEP has provided economic benefits to the Commonwealth in the form of additional jobs created both within the Company, and at the third-party contractors who play a vital role in performing GSEP work. Since the inception of GSEP on January 1, 2015, the contractor pool qualified to perform this work has increased to keep pace with the GSEPs. For example, prior to January 1, 2015, NSTAR Gas relied on approximately 15 contractor crews (4 members per crew) to perform replacement work as part of its annual capital program. By 2018, NSTAR Gas was relying on approximately 40 contractor crews to perform GSEP work. NSTAR Gas also increased internal staffing in the areas of engineering and supervision, including nine Supervisors of Field Operations and 17 Field Operations Inspectors, as well as administrative support to assure the continued, safe, effective and efficient completion of GSEP work.

Q. Is the Company making other significant capital investments in the distribution system that will continue in the future?

A. Yes, in addition to the significant amount of capital work completed since 2015 through the GSEP (averaging approximately $72 million per year), the Company is making substantial investments in other system components for reliability purposes. In fact, annual non-GSEP distribution investments totaled approximately $65 million, on average, over the past five years and annual expenditures on non-GSEP capital projects are expected to increase over the next five years. A significant amount of attention is placed on the Company’s GSEP work and the associated cost recovery; however, the
Company’s investments in non-GSEP infrastructure are just as vital to the public safety and emissions reductions objectives that serve the interests of customers. These investments are a critical impetus of the Company’s PBR proposal in this case.

In that regard, the dominant cost pressure for the Company is the carrying cost of capital investment not yet included in base rates or recovered through GSEP. As shown in the graph below, rate base grew by more than two-thirds between 2014 and 2019, due to both GSEP and non-GSEP investment. The Company’s expectation is that rate base will continue to increase on a comparable basis over the PBR Plan term creating cost pressures that have to be addressed for the Company to maintain the financial integrity needed to support safe and reliable operations.
Looking ahead, the Company expects that capital spending over the five-year PBR plan term, on both GSEP and non-GSEP work, will increase substantially as compared to spending over the last five years. In particular, non-GSEP spending is forecast to more than double over the course of the PBR Plan term, as compared to the level of spending in 2015.

The Company’s non-GSEP investment is focused in four principal categories, encompassing the following:

Pressure Regulation Modernization

Pressure regulation in use currently at city gate and district regulator stations is robust, simple, safe, reliable and operates even when electric power and communication with the Gas Control Center is lost. However, there are opportunities for modernizing pressure regulation, system oversight and control through incremental capital
investment in equipment that is monitored, supervised and controlled by the Gas
Control Center. The Company’s investment strategy for improvement in these areas is based on a multi-year plan with phased implementation focused on broadest to localized impact; land and use rights; and downstream system pressure classification. The Company has planned specific investments including emergency shut-down devices, remote monitoring and control devices, and telemetry, which will be phased-in as follows:

- Phase 1 involves the installation of Emergency Shutdown Devices at all gate stations (excluding those planned as part of the Gate Station Asset program).
- Phase 2 involves the installation of electric power and communications at targeted district regulator facilities, which includes remote monitoring and control devices, where rights and ownership already exist.
- Phase 3 includes accelerated deployment of pressure telemetry.
- Phase 4 accommodates the timing necessary to establish rights and further the installation of additional monitoring and control.
- Phase 5 involves the installation of targeted Remote-Control Valves in the distribution system.

Low-Pressure Protection Program

Eversource has developed preferred district regulator, outlet piping and sensing line designs for all pressure classes. This program uses the risk-assessment regulator model and the risk-assessment sensing light model to develop projects. The goals of this program include:

- Providing for a third level of pressure protection to protect Eversource’s low-pressure systems.
Eliminating single incident failures at all low-pressure district regulators.

Developing protection measures based on the configuration and condition of district regulators, sensing lines and outlet piping.

Converting approximately 17 low-pressure district regulators to intermediate pressure by 2024.

The specific pressure-protection measures planned for investment include:

- Installation of strainers and regulators to prevent single incident failures.
- Installation of slam-shut and super-monitor regulators to prevent over/under pressure situations.
- Rebuilding/installing sensing line and outlet piping to match new manifold design.

System Resiliency

Mitigating energy disruptions is fundamental to infrastructure resilience. Mitigating natural gas disruptions is particularly important because customers rely on natural gas to heat their homes, and more customers depend on it as a source of energy. For example, customer-owned fuels cells powered by natural gas are becoming more prevalent. Although natural gas disruptions are generally less likely than electricity disruptions, it is significantly more difficult to recover from disruptions to these systems than electric systems. Recovery from natural gas disruptions is particularly difficult because of the need to individually visit customers multiple times to fully restore service. To address this area of concern, the Company has planned three pipeline infrastructure projects to mitigate energy disruptions:
• Hopkinton Ashland Transfer Line
• Worcester Feed Replacement
• Plymouth North South Connector

System Reliability Investments

Eversource has planned a set of investments and a coordinated work plan to attain safety and reliability goals that meet state and federal pipeline safety requirements. For example, the Company has planned upgrades to several of its gate and regulator stations and projects to maintain minimum system pressures under winter peak conditions, as well as reinforcements for reliability. The Company is also planning investments in leak remediation, corrosion remediation, service valve replacement and system telemetry.

Q. What are the principal operational areas that the Company is working on to promote the safety of the system?

A. Over the last several years, the Company has focused on implementing several measures, initiatives and organizational enhancements to improve the safety of operations. The two principal areas of focus are, as follows:

• Gas Control and Dispatch Consolidation. The Gas Control and Dispatch Center is the nerve center of the NSTAR Gas distribution network. In November 2018, Eversource Energy completed the consolidation of its Massachusetts and Connecticut Gas Control operations into a single combined location in Southborough, Massachusetts. This consolidation was undertaken, in part, to better
leverage best practices from each Gas Control and Dispatch area. In addition, with
the ability to cross-train employees, the Company will provide more enhanced Gas
Control and Dispatch support during non-routine peak periods.

- **Standardization of Procedures & Construction Standards.** Eversource Energy is
working to consolidate and standardize the Massachusetts and Connecticut
procedures and construction standards into a common set of procedures and
construction standards across the entire Eversource Energy gas-service territory.
Having a single set of procedures and construction standards will streamline and
standardize operations, improve the effectiveness of employee training and
augment service quality across the entire business. This effort is nearly complete.
All consolidated procedures, construction standards and work practices are
expected to be published by November 2019. However, standardization is an on-
going process and the Company expects to continually update and refine its
operating procedures over time.

**Q. What are the supporting areas of focus that NSTAR Gas is working on to promote
safety and service quality on its distribution system?**

A. In addition to the two primary areas of focus discussed above, the Company has taken
the following actions to reinforce safety:

- **Quality Assurance and Quality Control (“QA/QC”) Program.** The Company has
greatly enhanced its QA/QC program. Through quality management, NSTAR Gas
is ensuring that its people, processes, and technology work effectively to achieve
excellence in safety, compliance, reliability and productivity. The NSTAR Gas QA/QC programs perform random, post-construction audits and re-dig inspections highlighting where risks exist. Objectives include reviewing construction with respect to federal/state safety codes, Construction Standards, Safety Policies and Operator Qualifications (“OQ”). QA/QC assists with taking corrective action when required and helps ensure that focus is re-directed on proper procedures when necessary. QA/QC also highlights when modifying current procedures/training is necessary and promotes the addition of new procedures and training, all designed to further increase safety and efficiency.

• Improved Safety Performance. Eversource Energy is committed to providing a safe work environment. Eversource Energy recently hired Ken Bogler as Vice President, Safety, who is dedicated to overseeing the Company’s culture of “Safety First and Always.” This principle guides all employees to take personal responsibility by following required safety practices, acting proactively to prevent incidents and injuries, communicating potential hazards and being prepared for emergencies that may occur in the workplace. The Company has improved safety performance with a “Safety First and Always” culture and it is a key operating focus for the business. The Company’s goal is a zero-injury environment.

For Connecticut and Massachusetts combined, Eversource Energy’s gas operations have improved safety performance from 29 Days Away, Restricted or Transferred
(“DARTs”) in 2014 to 14 DARTs in 2018; and improved safety performance from 17 Preventable Motor Vehicle Accidents (“PMVAs”) in 2014 to eight PMVAs in 2018. For Massachusetts gas operations during this timeframe, DART rates decreased from 3.33 in 2014 to 1.84 in 2018; and PMVAs decreased from 3.14 in 2014 to 1.17 in 2018.

- **Shift to Eversource Energy Operator Qualification Program.** In 2017, the Company took the initiative to implement an Eversource Energy-specific OQ program, which includes third-party proctoring of all employee testing. NSTAR Gas is the first New England company to move its on-line OQ testing to an offsite testing facility. The benefits of this initiative include:

 - Aligning OQ testing with Company standards, which in all cases at least match the minimum federal requirements, and in many instances exceed the minimum federal regulations.

 - Ensuring employees and contractors are knowledgeable of and trained on those requirements.

 - Providing a secure online testing environment where content is protected (Prometric testing centers are established nationwide as a secure and trusted testing center used by hundreds of organizations).

 - Conducting performance evaluations with an objective third-party vendor (Lonestar Consulting Services), which is subjected to periodic audits by the Company’s online database provider, Energy Worldnet.
• **Refined Emergency Response Plan.** Between 2014 and 2019, Eversource Energy conducted a comprehensive review of its Gas Operations Emergency Response Plans ("ERPs") to identify and incorporate best practices and harmonize training, practices, and procedures across its operating units. This effort was accomplished by a dedicated Company team managed by Joshua D. White, the recently appointed Manager of Gas Emergency Preparedness for the Company. Mr. White has a Master of Science in Emergency and Disaster Management and, prior to his current position with the Company, had an impressive career building expertise in operational planning and strategic analysis. Mr. White previously served as the Operations Manager for the Federal Emergency Management Agency, Region I, where he managed the operational response of all federal military assets across six states during Superstorm Sandy and Hurricane Isaac. In this capacity, Mr. White served as the primary safety officer for all federal military assets deployed within Region I in support of disaster response operations during three presidential-declared disasters.

The ERP is the foundation of a comprehensive emergency management program of preparedness, mitigation, response, and recovery actions designed to preserve the public safety and welfare through the delivery of safe, efficient, and reliable gas service.
Continued Focus on Seeking to Improve Customer Satisfaction. The joint testimony of Company Witnesses Conner and Goldman discusses the strategies that the Company is employing to improve the satisfaction and experience of its customers.

Q. What are the factors driving change in the Company’s business and operating environment looking forward?

A. The date of this filing marks just over one-year since the tragic events that took place in the Merrimack Valley. This event has profoundly impacted the natural gas industry and prompted both the industry and its regulators to reevaluate safety standards, practices, protocols, and procedures to enhance the safety and reliability of the natural gas distribution system. The Merrimack Valley incident will catalyze change to the regulation of natural gas and to the Company’s business and operating environment into the future.

In fact, this catalyzation has already started to take shape. For example, on December 31, 2018, Massachusetts Governor Charlie Baker signed Chapter 339 of the Acts of 2018, An Act Further Providing for the Safety of the Commonwealth’s Natural Gas Infrastructure (“Gas Safety Act”), as emergency legislation requiring a licensed Professional Engineer to approve plans for the construction of natural gas infrastructure. In March 2019, the Department initiated a proceeding to promulgate the regulations necessary to implement the Gas Safety Act.

Most important is that the Merrimack Valley incident has shaken the confidence of the general public, including current and potential customers of NSTAR Gas. Regarding
its current customers, NSTAR Gas has experienced negative impacts to its J.D. Power customer ratings. As discussed in the joint testimony of Company Witnesses Conner and Goldman, gas customers are seeking reassurance from their utility providers that the service they are taking is safe. As explained in that joint testimony, the Company has taken proactive steps to deploy a Public Safety Education Campaign to engage and educate customers with relevant gas-safety messaging. NSTAR Gas plans to carry this program forward with refinements in the future.

In the wake of the Merrimack Valley incident, the natural gas industry must rebuild the trust of all stakeholders, including the general public and regulators, and work to restore their confidence in the safety and reliability of the natural gas system. NSTAR Gas recognizes that increasing investments and improvements to operating processes are necessary and plans to work hard over the five-year PBR term to further improve the safety and reliability of the NSTAR Gas distribution system.

Q. What specific actions are planned by the Company to further improve safety and reliability post-Merrimack Valley?

A. On a going forward basis, and as described more fully in the following sections, the Company is planning strategic investments in people, processes and technology to further improve safety and reliability in a post-Merrimack Valley operating environment.
A. Investments in People

Q. You mentioned that the Company is making strategic investments in people, processes, and technology. What is the Company doing in relation to investments in people?

A. Simply put, the Company’s most valuable resource is its workforce. For this reason, training is the fundamental stepping stone to increase employee engagement and reduce risks associated with human error. An engaged workforce is critical to Eversource Energy’s mission of delivering safe and reliable energy service and a superior customer experience.

As discussed above, Eversource is engaged in an unprecedented level of capital deployment driven by the need to replace aging infrastructure and to comply with state and federal regulatory requirements. At the same time, rates of employee retirements in the gas industry are accelerating and there is a scarcity of new skilled labor to backfill those positions. These dynamics pose a challenge for the business. Also, the demographics in the Company are changing, in that employees who are hired by the Company in today’s environment are technologically savvy and are used to relying on technology for educational purposes. To meet these challenges, the Company is continually refining its recruiting strategies to ensure that NSTAR Gas can attract and retain high-quality talent and improve upon its training practices to make sure these new employees are productive, responsible and empowered to be successful in the field.
Q. What actions is NSTAR Gas taking to improve recruiting and training?

A. The Company expects to add personnel to assist in efforts to replace aging infrastructure across its system at an accelerated pace and to comply with the rigorous state and federal regulatory requirements that will be implemented post Merrimack Valley. Eversource Energy is offering candidates solid, long-term career jobs with competitive benefits and, with effective and targeted recruiting strategies, NSTAR Gas should be able to find the right talent to staff its workforce for the future.

With respect to recruiting, Eversource Energy is in the process of creating a program in Massachusetts similar to what it already has in place in Connecticut. This will be a tuition-based certification program, with a rigorous selection process that requires participants to complete a course over several months to learn the gas distribution business. In Connecticut, the program is conducted in partnership with Middlesex Community College (“MCC”). The students pay tuition to the college and a portion of those funds is used to defray Eversource Energy’s costs to conduct the program (e.g., drug and alcohol testing, instructor costs, program materials, and personal protective equipment). The students receive instruction and training at Eversource Energy’s Berlin campus and MCC conducts the recruiting and marketing for the program. Participants who successfully complete the program will have the opportunity to interview for positions within the Eversource Energy organization. The Company’s first class graduated from the Connecticut program last year, and every one of the graduates secured employment with Eversource Energy. The Company is in
preliminary discussions with a Massachusetts college to act as partner for the program in the Commonwealth.

The Company is also finding success in recruiting former military personnel as those individuals have the strong leadership and practical know-how that Eversource Energy is looking for in its employees.

With respect to training, it is imperative that new and existing employees receive extensive hands-on training; have an opportunity to get familiar with the equipment; gain knowledge of the Company’s processes and procedures; and learn to work on the natural gas distribution system in a safe manner. The importance of hands-on training cannot be stressed enough—employees needs to be exposed, under controlled conditions, to what they may encounter in the field, so they are prepared to respond in the event that unexpected circumstances occur.

The Company recently completed a new training facility at Eversource Energy’s Berlin campus, which contains a Natural Gas Training Yard, featuring five main activity areas that focus on providing safe, hands-on training for natural gas personnel. NSTAR Gas is creating the same training opportunity in Massachusetts where the Company can conduct both classroom training and hands-on training to the new hires, veteran employees, and contractors who work on the Company’s natural gas distribution system. To that end, Eversource Energy is outfitting the Auburn Area Work Center
(“Auburn AWC”) to be the flagship location for employee training and fleet maintenance and the facility features an Outdoor Training Yard, like the Berlin facility.

Q. What are the incremental staffing additions that are now necessary for the NSTAR Gas Operations group?

A. The incremental staffing additions that are now necessary for the Company’s Gas Operations group are shown in Exhibit ES-WJA/DPH-2, at pages 2 and 5. Specifically, the Company is increasing staffing within Gas Operations by 32 fulltime equivalents (“FTEs”) to support the increased amount of field work associated with the Company’s capital programs, which maintain the safety and integrity of the distribution system. Additional staffing will be added to the organization overseen by the Vice President of Gas Operations to further support the Company’s long-term strategic objectives, including improvements to the Company’s delivery of Project Management, Long-term Planning, Pipeline Safety Management, and Quality Assurance. The specific FTEs are described by business unit below.

Maintenance

The Company is hiring 12 FTEs in the Maintenance unit within the Gas Operations group as follows:

Maintenance Supervisor (1 FTE) – This FTE will supervise the work performed by the Company’s internal workforce of mechanics who maintain the gas distribution system. This incremental position is required to maintain an appropriate span of control over the work force.
Welder (1 FTE) – Welders perform welding services on steel pipe required to maintain
the gas distribution system. This incremental position is needed to support increases
in annual work volumes.

Maintenance Mechanics/Technicians (10 FTEs) – Distribution mechanics repair leaks,
replace and install service lines and perform live gas main connections and
disconnections. These FTEs are needed due to increases in annual work volumes,
which are the result of increases in the miles of main installed and retired under the
Company’s GSEP program.

Dispatch & Meter Services
The Company is adding 6 FTEs to the Dispatch and Meter services unit within the Gas
Operations group to support both increases in work volumes and additional
responsibilities, which have been assigned to the Dispatch and Meter group from Gas
Control.

Dispatch Manager (1 FTE) – This FTE will oversee and manage the Dispatch Center.

Meter Services Supervisor (1 FTE) – This FTE will supervise the work performed by
the Company’s internal workforce of meter-services technicians.

Service Technicians (3 FTEs) – These FTEs will install, change, remove, inspect and
maintain meter set assemblies; perform meter turn-on and turn-offs; support leak
investigations; and provide emergency response.
Dispatch Clerk (1 FTE) – This FTE will be responsible for monitoring various aspects of the Dispatch office, including customer requests, questions, issues and Meter Service Department workload management. Additional duties will include acting as a communication liaison for Dispatch/Meter Service and the Call Center.

Construction

The Company is hiring 1 FTE in the Construction unit within the Gas Operations group:

Construction Supervisor (1 FTE) – Construction supervisors are responsible for the execution of construction projects to install gas main and services by internal personnel and external contractors. This FTE is needed to provide oversight to incremental outside contractor resources required to complete the work associated with the overall capital plan, which includes five-miles per year increases in the amount of main being replaced annually under the GSEP program.

Technical Services (Leak Survey and Damage Prevention)

The Company is adding 2 FTEs to the Technical Services unit within the Gas Operations group:

Corrosion Technician (1 FTE) – This FTE will perform mandated testing of cathodically protected steel gas mains and services and manage the work of contractors engaged by the Company to make required corrosion repairs to its gas distribution system. Performing this work in-house enhances the Company’s ability to perform
testing concurrent with corrosion repairs, where in the past, a second visit to the job site was required to complete testing after a repair was made.

Damage Prevention Supervisor (1 FTE) – This FTE will be responsible to improve and manage the Company’s damage-prevention program by working with third-party excavators and managing internal personnel that perform mark outs of Company gas facilities in accordance with Dig Safe law. This FTE is needed to maintain an appropriate span of control over Company resources that execute the work due to increases in work volumes.

Project Management

The Company is hiring 6 FTEs in the Project Management unit within the Gas Operations group as follows:

Manager Project Controls (1 FTE) – This is a new position to oversee the work order creation process and closeout teams, along with any supporting design estimation involved in finalizing budgets for capital work.

Supervisors (2 FTEs) – One supervisor role will support the work-order creation, approval and close-out processes for capital work. The second Supervisor role will oversee the estimation and project budget tracking for capital work orders, as well as

2 G.L. c. 82, §§ 40 through 40E.
any variances and will maintain and apply proper pricing information for project estimates.

Specialist Contractor Billing (1 FTE) – This is a new position to support adequate and timely processing of contractor billing to ensure all costs are accurately reflected on the corporate books. This FTE will be responsible for validating contractor bills relative to the work performed along with the contracted rate structure.

Estimators (2 FTEs) – These FTEs will support annual increases in work volume. These FTEs are required to adequately support the needs of the operating departments and are responsible for supporting the work order creation team with timely cost and material estimates for capital projects.

Planning and Scheduling

The Company is hiring 5 FTEs in the Planning and Scheduling unit within the Gas Operations group as follows:

Manager of Operations Performance and Long-Term Planning (1 FTE) – This FTE will oversee the Operations Performance Analysts and the Long-term planning function implemented by the Company.

Operations Analyst (1 FTE) – This new analyst will prepare operational measures and metric reports that will be used to monitor business performance and provide analytical
support to field Operations departments. This FTE is required to adequately support
the needs of the Operations departments.

Gas WAM Administrator (1 FTE) – This FTE will perform the system maintenance and
updates required to support the Company’s new work and asset management systems
that were implemented in 2019.

Resource Management and Workforce Analyst (1 FTE) – This is a new position that
will be responsible to maintain integrated one-year, three-year and five-year resource
plans to support the Company’s future operating and capital programs. Development
and maintenance of these staffing models will allow the Company to properly plan for
and execute its hiring needs in the future.

Clerk (1 FTE) – The Operations clerk will process payroll, apply for permits and dig
safe requests, and perform other administrative duties as assigned in support of day to
day operations. This FTE is required to support increases in the volume of work
associated with corresponding increases in the Company’s capital programs.

Q. What are the incremental staffing additions now necessary for the NSTAR Gas
Engineering Division?

A. As shown in Exhibit ES-WJA/DPH-2, on pages 2 and 5, the Company is increasing
staffing within Gas Engineering by 34 FTEs to better position the Company to respond
to increasing regulatory requirements and increasingly formalized coordination and
risk management processes. These positions will also support the Company’s
increased and growing capital programs. The FTEs are described by business unit within the Gas Engineering group below.

Gas System Engineering

The Company is hiring 19 incremental FTEs in the Gas System Engineering unit within the Gas Engineering group as follows:

System Planning and System Analysis Enhancement (1 Manager, 2 Engineers) - The system-planning and system-analysis group oversees the design and planning of the overall distribution systems. Additional staffing is required to support the formalized Planned Work Authorization (“PWA”) process. The PWA process is as follows:

- The PWA process is intended to provide greater visibility into all projects occurring simultaneously within the system to all the affected groups with the Eversource Energy gas business.

- The PWA process is the sequence of steps necessary to accomplish planned work in the Eversource Energy gas business, beginning with the request to develop a job-specific procedure or to schedule other planned work, and ending with the close out of the work authorization by Gas Control.

- The PWA process integrates all the steps required to submit and authorize work that can affect the flow of gas or generate alarm conditions in the Control Room.

- System planning participates in each PWA to perform system analysis for each job specific procedure, including consideration of other ongoing and/or simultaneous procedures.

- System analysis updates the system analysis when a change to a job specific procedure is made.

- System analysis is also responsible for coordinating with Field Engineers to resolve conflicts.
Field Engineers (7 engineers) – The field engineers focus on a specific geographic area to increase knowledge and visibility of area-specific issues in the Gas System Engineering department. These additional engineers are required to support the PWA process described above and the Field Condition-Based Modification process described below.³

Policy and Compliance Enhancement (1 engineer) - This group supports the development and continuous improvement of Eversource Gas Standards, Procedures, and Work Practices. There are three major new procedures in development as part of the Company’s initiatives post-Merrimack Valley: the PWA process described above, the Field Condition-based Modification procedure, and the Management of Change Initiative. Additional staffing is required to ensure that the Field Condition-Based Modification is implemented effectively, as follows:

- This procedure will validate that any changes made to job-specific procedures attributable to field conditions are safely and effectively incorporated to new job-specific procedures, drawings and records. The procedure also ensures that this process is performed in a way that meets regulatory requirements.

- All stamped drawings used with job-specific procedures will be approved by Project Engineering and Operations.

³ Under Gas Engineering, the Company is currently planning to add professional engineers within the category of Field Engineers (7 FTEs) and Complex Projects PM Enhancement (3 FTEs). All of the ten incremental FTEs planned in these two categories do not need to be professional engineers to meet the Department’s pending standard. However, the Company is targeting five positions in Massachusetts. Some of these professional engineers may be hired having passed the exam, but needing work experience to fulfill the entirety of the professional engineer licensing requirements.
Drawings will be managed consistently across the Eversource Energy Gas business. Drawing formats, notes, and symbology should be consistent and conform to existing Eversource Energy standards.

Criteria for what constitutes a drawing change (based on field conditions) will be defined in a drawing modification work practice.

A process will be developed to ensure that drawing modification support is available whenever field work is taking place that could require a change.

Where required by state regulations, Eversource Energy gas business drawings will be stamped by a licensed Professional Engineer.

Management of Change Coordinator (1 engineer) – As noted above, there are three major new procedures in development as part of the Company’s initiatives post-Merrimack Valley: the PWA process described above, the Field Condition-based Modification procedure described above, and the Management of Change Initiative. A Management of Change (“MOC”) Coordinator will be hired to oversee this important initiative. MOC considerations are as follows:

- Management of Change, or MOC, is a best practice used to ensure that safety, health and environmental risks are controlled when a company makes changes in their physical assets, facilities, documentation, personnel, or operations.

- Eversource Energy plans to meet MOC requirement(s) by following the MOC Guidelines in API-RP-1173 and verify that all other requirements are met by API-RP-1173.

- The changes that a MOC addresses will include technical, physical, procedural and organizational.

- For each MOC, the pipeline operator will identify the potential risks associated with the change and any required approvals prior to the introduction of such changes.

- This procedure will consider permanent or temporary changes.
The process will incorporate planning for the effects of the change for each of these situations.

In addition, the MOC Coordinator will:

- Receive, collect, and manage all MOC forms.
- Track the status of all in-progress MOC forms, risk analyses and implementation plans.
- Perform analyses to support the continued improvement of the MOC procedure.
- Propose and implement changes to the MOC procedure and the development of additional procedures to support effective MOC in the Gas Business Unit.
- Aid in the resolution of conflicts discovered during an MOC process.

Asset Management Enhancement (2 engineers) - These FTEs will support the gas asset and risk management program, which uses a risk-based approach to asset management and establishes the capital budget based on risk prioritization. The addition of these engineers will also:

- Accelerate the timeline to improve asset and risk management program maturity and achieve ISO 31000 standard, demonstrating the Company’s commitment to safety and operational excellence.
- Increase the rigor of engineering assessments, including quantified risk scoring to build a common risk register across asset families.
- Provide the opportunity for increased engagement and follow up with groups outside of engineering to emphasize safety and risk reduction efforts through the gas organization.
- Ensure the timely completion of studies to more proactively identify and mitigate risks.
- Improve the quality of program elements, including: integrity assessments, data collection and analysis, performance tracking, asset replacement reviews, resource planning, records management, and fitness for service reviews.
Complex Projects PM Enhancement (3 engineers) - These FTEs will manage engineering, design, construction and project management for all I&R capital and complex projects: take stations, district regulators, remote control valves, telemeters, and temporary LNG/CNG facilities in both states. The addition of these engineers will also:

- Establish strategy and implement enterprise wide standards for engineering design to support the consistent, reliable and cost-effective gas delivery.
- Provide oversight of third-party engineering service providers.
- Ensure all complex design projects are appropriately assessed, designed, planned, resourced and scheduled in a timely and cost-effective manner.
- Complete independent design reviews of complex projects.
- Assess and implement new technology and techniques that improves safety, reliability and compliance.
- Plan, manage, and work with I&R and Asset Family Owners to implement enhancements to take station and district facilities to maintain a reliable network and ensure potential hazards are managed safely and effectively.
- Oversee Management of Change procedures for projects – a design change that alters the approved design and may result in operation changes of the system (flows, pressures, temperature, reliability, etc.).
- Ensure proper communications interface and information flow with Gas Control and control room management requirements.

GIS Techs (2 techs) - These FTEs will support the use of GIS as the repository of record for all assets in the Gas Business Unit.
Gas System Operations (Gas Control) (1 Supervisor, 1 Engineer)

The Gas Control organization is the nerve center of the gas distribution system. Gas Control is responsible for observing and watching over the system using Supervisory Control and Data Acquisition (“SCADA”). Gas Control responds to alarms through the SCADA program and interacts with the multitude of crews working on the distribution system daily to ensure supply of gas is not unintentionally interrupted to any customers, and to ensure the safety of our employees, customers, and their property. Additional staffing is required to support the following changes to the Gas Control system, as follows:

- Meet increased regulatory requirements related to control room management
- Oversee additional data and control points on the distribution system
- Support the Planned Work Authorization process
 - Review and approve job-specific procedures.
 - Review, approve, and communicate all scheduled work as submitted in PWA forms.
 - Communicate with and approve or deny supervisors or employees requesting authorization for planned work immediately prior to the commencement of the work.
 - Communicate with supervisors and employees notifying Gas Control that the authorized task was completed or that they are leaving the work site.

Instrumentation and Regulation (1 Director, 4 Technicians)

The GBU I&R department is responsible for the maintenance and inspection of many critical components of the Company’s gas distribution system, including gate and
pressure regulation stations and large customer meter sets. The team also performs monthly tests to ensure the gas traveling in the distribution system is properly odorized. The team monitors and responds to all system alarms, including pressure, temperature, station intrusion, and odorizer reports from the field.

In addition to conducting the inspections required by the Department, the team also plays a lead role in the prioritization and execution of all gate and regulator station modifications and replacements, remote control valve installation and maintenance, large customer set installation, pickling of new steel pipelines and purging (pre-odorizing pipe) and flaring operations. Additional staffing is required to support various initiatives related to gate and regulator stations:

Emergency Preparedness (1 ERP Specialist)

The Emergency Preparedness group ensures that the Company is prepared for any type of emergency event. The group is responsible for maintaining the Incident Management Team roster, as well as the ERP for Eversource Gas, including acquisition of outside mutual aid resources, and communication plans to affected areas. Additional staffing is required to support the continued improvement of the Gas ERP.

New Engineer Cohort Program (6 FTEs)

The Engineer Cohort Program is designed to provide individuals hired into a Gas Engineering position with an opportunity for career development, training, and varied work experience. The program provides each individual an opportunity to gain
experience working in different engineering areas. This program is based on the successful Gas Supervisor Cohort Program and, on the electric side, the Eversource Engineering Professional Development Program.

Director of Clean Gas Technologies (1 FTE)

The Director of Clean Gas Technologies will represent and advance the Gas Business Unit in areas of clean gas technologies, including RNG, power-to-gas, operational methane reduction, LNG strategy coordination, and gas efficiencies.

Q. What are the incremental staffing additions now necessary for the Company’s Pipeline Safety and QA/QC group?

A. As shown in Exhibit ES-WJA/DPH-2, on pages 4 and 5, the Company is increasing staffing within Pipeline Safety and QA/QC group by a total of 9 FTEs.

As discussed earlier in this testimony, Eversource Energy has adopted and commenced implementation of QA/QC programs for its gas operations. Also, as discussed later in this testimony, the Company is implementing a Pipeline Safety Management System (“PSMS”), in line with the industry standard American Petroleum Institute (“API”) Recommended Practice RP 1173 (“API 1173”). These programs are aimed at assuring that processes are in place to prevent breakdowns in the controls used by the Company to maintain compliance, quality, and safety. This is accomplished through proactive assessment of these controls. The goals of the Eversource PSMS include:

- Promoting a proactive safety culture with employees and management;
Evaluating and assessing PSMS programs on a periodic basis to ensure that structure is aligned with the Company’s mission and business objectives;

Establishing continuous monitoring and improvement programs as appropriate with responsible parties assigned to perform oversight of these programs;

Coordinating with outside parties (American Gas Association, Northeast Gas Association, other operating companies) to review and identify best practices and processes that enhance the NSTAR Gas PSMS; and

Measuring the PSMS effectiveness and maturity based on the recommendations per API 1173, Pipeline Safety Management Systems - the industry standard for these programs.

To support the PSMS, QA/QC and the specific goals articulated above, the Company is adding the following nine FTEs to its workforce:

Director (1 FTE) – The new Director will oversee this group and the overall PSMS and QA programs.

Manager (3 FTEs) – These managers will be responsible for management and oversight of the PSMS and QA programs.

PSMS Program Administrator (2 FTEs) – These FTEs will provide support in the execution of the PSMS and QA programs by monitoring and implementing plans within these programs, including gap analyses, fieldwork audits and assessments, and continuous improvement evaluations.

QA/QC Analyst (1 FTE) – These analysts will prepare QA/QC measures and metric reports used to monitor quality, compliance, and business performance and provide
analytical support to the QA/QC program. These FTEs are required to adequately support the needs of the PSMS and QA/QC group.

Process Safety Coordinator (1 FTE) – This FTE will focus on gas-specific process safety including, but not limited to, performing hazard analysis (core risk-based tasks and complex projects), leading performance initiatives, and administering the incident analysis and investigation programs.

Process Analyst (1 FTE) – This analyst will prepare process measures and metric reports used to monitor safety performance and provide analytical support to the PSMS and QA/QC programs. This FTE is required to adequately support the needs of the PSMS and QA/QC group.

Q. Is the Company proposing to recover the costs associated with the addition of any incremental post-test year FTEs as part of this proceeding?

A. Yes. In this proceeding, the Company is proposing to recover the costs of 75 incremental FTEs discussed above in the base revenue requirement approved in this proceeding, which is 32 FTEs in the Gas Operations group; 34 FTEs in the Gas Engineering group; and 9 FTEs in the Pipeline Safety and QA/QC group. Exhibit ES-
WJA/DPH-2 shows the dispersion of the 75 FTEs that the Company is proposing to include in the base revenue requirement to support the Company’s operating functions.

Q. Why should the Department consider including the cost of 75 incremental FTEs, not hired in the test year in the cost of service in this proceeding?

A. The Company is aware that the Department has denied previous requests to make post-test year adjustments in base-rate cases to incorporate the cost of employees added after the test year. The Company is asking the Department to consider including the cost of incremental FTEs in this case due to the fact that the Company is committing to a five-year stay-out and will not be in a position to return to the Department in the interim to include the cost of these incremental employees in the cost of service. It is critical for the Company to have the flexibility to add these needed positions during the term of PBR Plan. The Company is committed to hiring these incremental employees and will report on its progress to fill these positions throughout the course of this proceeding and beyond if the positions are not filled by the end of the case. The post-test year adjustment associated with the 75 incremental positions totals $2.4 million and is discussed in the joint testimony of Company Witnesses Horton and Botelho regarding the proposed revenue requirement.

B. Investments in Process

Q. Please elaborate on what you mean by “process investments.”

A. Safety management systems have proven to be useful tools for developing a comprehensive, process-oriented approach to safety in other industries, such as
aviation, nuclear power and chemical manufacturing. The Pipeline Safety Management System, or PSMS, associated with the American Petroleum Institute Recommended Practice RP 1173 (“API 1173”) was published in July 2015 and was developed by the API with input from National Transportation Safety Board (“NTSB”), the Pipeline and Hazardous Materials Safety Administration (“PHMSA”), states, and industry representatives. API 1173 is a framework for improving pipeline safety that includes the identification, prevention and remediation of safety hazards. API 1173 “identif[ies] what is to be done, and leaves the details associated with implementation and maintenance of the requirements to the individual pipeline operators.”

The following eleven principles comprise the basis of the API 1173 PSMS:

- Commitment, leadership, and oversight from top management are vital to the overall success of a PSMS.
- A safety-oriented culture is essential to enable the effective implementation and continuous improvement of safety management system processes and procedures.
- Risk management is an integral part of the design, construction, operation and maintenance of a pipeline.
- Pipelines are designed, constructed, operated, and maintained in a manner that complies with Federal, state, and local regulations.
- Pipeline operators conform to applicable industry codes and consensus standards with the goal of reducing risk, preventing releases, and minimizing the occurrence of abnormal operations.

• Defined operational controls are essential to the safe design, construction, operation, and maintenance of pipelines.

• Prompt and effective incident response minimizes the adverse impacts to life, property, and the environment.

• The creation of a learning environment for continuous improvement is achieved by investigating incidents thoroughly, fostering non-punitive reporting systems, and communicating lessons learned.

• Periodic evaluation of risk management effectiveness and pipeline safety performance improvement, including audits, are essential to assure effective PSMS performance.

• Pipeline operating personnel throughout the organization must effectively communicate and collaborate with one another. Further, communicating with contractors to share information that supports decision making and completing planned tasks (processes and procedures) is essential.

• Managing changes that can affect pipeline safety is essential.

Q. Has the industry, and more specifically the Company, committed to implement a PSMS?

A. Yes. After the Merrimack Valley incident on September 13, 2018, the Department requested that all gas companies adopt API 1173 and review their safety protocols, including an examination of the feasibility of implementing a PSMS. On November 21, 2018, the Baker-Polito Administration announced that the Northeast Gas Association ("NGA") committed to adopting API 1173 and same for the Commonwealth’s gas distribution companies.⁶

NSTAR Gas was one of the first companies to begin piloting API 1173 back in 2016 because it recognized, early on, that it was a rigorous, proactive approach to safe pipeline operation. In the wake of the Merrimack Valley incident, NSTAR Gas has committed to accelerate its deployment of a PSMS to augment its existing processes and procedures, to deal systematically with safe and effective pipeline operation on an enterprise-wide basis, and to minimize the potential for human-performance errors.

Q. What are some specific examples of enhancements the Company is making as part of the PSMS?

A. One of the key principles of a PSMS is a culture of “Safety First and Always.” “Leaders, managers, and employees acting to make safety performance and risk reduction decisions over time will improve pipeline safety, thereby strengthening the safety culture of an organization.” In this regard, and as discussed above, the Company has worked diligently to imbue the organization with a “Safety First” culture by committing to safety at the highest levels of the organization, implementing training and communication protocols to ensure that all employees understand the organization’s safety goals and applicable processes and procedures, and considering risk on a systematic basis. However, it can be difficult to objectively measure the culture of an organization because it is rooted in shared practices and attitudes that shape behavior.

In response to this challenge, the Company has successfully developed several performance metrics that provide objective indicators of a safety culture and measure the effectiveness of risk management. As discussed above, the Company measures DART rates and PMVAs and has already driven significant improvements in these safety-oriented metrics since its last base distribution rate case in 2014. In this proceeding, the Company is proposing additional safety-focused performance metrics—including measurement of API 1173 implementation—which are discussed in Section VII below.

Also, as noted above, one key principal of a PSMS is that risk management must be an integral part of the design, construction, operation and maintenance of a pipeline. Accordingly, NSTAR Gas is building controls (checks-and-balances) into how work is designed, scheduled, managed, and supervised, as well as integrating its ERPs into the PSMS framework. The Company is also continuing to review and refine its QA/QC program and implementing processes and procedures to ensure the accuracy and integrity of its records.

C. Investments in Technology

Q. Is the Company making investments in technology as part of the PSMS?

A. Yes. In addition to process improvements, the Company is pursuing investments in technology to improve safety and reliability and that will enhance the PSMS. For example, the Company has invested in enhancements to its geographic information system (“GIS”) to make it a central repository for compliance data and asset records.
In the past, this information was scattered across several different systems which was inefficient and time consuming. This effort has been enhanced by the Company’s investments in a new Enterprise Work and Asset Management (“WAM”) system and a ClickSoftware Workforce Management (“Mobile Gas WAM”) solution, which is discussed in more detail below. The Company has also invested in standardizing its Gas Measurement Instruments, which are used to detect natural gas in the field.

On top of the investments described above, the Company is evaluating investments in integrated field devices and communications infrastructure to more effectively operate the system, avoid incidents and mitigate the potential for human-error. These types of modifications could include remote controlled valves, slam-shut valves, and relief valves. This also includes building in more telemetry so that operators in the Gas Control Center in Southborough can better monitor pipeline pressures, flow conditions and operating conditions.

Q. **Are there additional technology solutions that the Company may seek to invest in over the five-year PBR term?**

A. Yes, there are other new and emerging technologies that may become commercially viable over the five-year PBR term that the Company could employ to further enhance safety and reliability. For example, the Company is evaluating residential methane detectors, which can be deployed to detect natural gas leaks in the Company’s territory and allow the Company to respond quickly to mitigate potential problems. Another example is evolving meter technology. There are devices under development that have
the capability to regulate pressure and flow, and to monitor corrosion and methane emissions. The Company will continue to track the progress of technologies that could help enhance safety and reliability, and further the objectives of PSMS, over the course of the five-year PBR term.

Q. Are there other key technology investments the Company has made that you would like to highlight?

A. Yes, as I noted above, the Company has invested in two significant projects to enhance the Company’s ability to provide safe, reliable, and quality natural gas distribution service.

The first investment is the Gas WAM project. Eversource Energy’s work management systems were dated; at risk of failure due to technical obsolescence; and unable to meet future business needs. In response to this challenge, Eversource Energy initiated the WAM project to implement a single, core enterprise asset management solution that replaces the legacy Northeast Utilities STORMS and legacy NSTAR Passport Work Management and other associated solutions. The Gas WAM system is implemented at NSTAR Gas and Yankee Gas and the second phase of the WAM implementation will cover the Eversource Energy electric operating companies. The NSTAR Gas and Yankee Gas phase of the WAM project was placed in service in March 2019.

The WAM system will enable industry standard, best practices across the Company’s work and asset management processes through a robust application architecture. The Company anticipates that long-term benefits from the implementation of the WAM
system will be experienced in the areas of customer engagement, standardization of process/metrics, asset management, mobility, and IT:

<table>
<thead>
<tr>
<th>SUMMARY OF ANTICIPATED BENEFITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Engagement</td>
</tr>
<tr>
<td>• Easy, real-time access to accurate information</td>
</tr>
<tr>
<td>• Enhanced options for appointment scheduling</td>
</tr>
<tr>
<td>• Improved service turnaround time (complete the job on or before the promised date)</td>
</tr>
<tr>
<td>Standardization of Processes/Metrics</td>
</tr>
<tr>
<td>• Implement utility best practice work processes across all Operating Companies</td>
</tr>
<tr>
<td>• Improves efficiency by standardizing practices, procedures, guidelines, and roles across Design, Scheduling, Construct</td>
</tr>
<tr>
<td>• Common Performance Metrics</td>
</tr>
<tr>
<td>Asset Management</td>
</tr>
<tr>
<td>• One single asset repository, fully integrated with WM & GIS</td>
</tr>
<tr>
<td>• Streamline work processes for maintenance compliance lifecycles</td>
</tr>
<tr>
<td>• Improved decision-making regarding asset replacements vs. maintenance</td>
</tr>
<tr>
<td>Mobility</td>
</tr>
<tr>
<td>• Elimination of paper work packages</td>
</tr>
<tr>
<td>• Improved efficiency via elimination of handoffs / rework / lost paperwork</td>
</tr>
<tr>
<td>• Near real-time status updates</td>
</tr>
<tr>
<td>IT</td>
</tr>
<tr>
<td>• Reduced risk of business disruption and mitigation costs</td>
</tr>
<tr>
<td>• Reduction of application portfolio through retirement of legacy systems</td>
</tr>
</tbody>
</table>

The second investment is the deployment of the Mobile Gas WAM solution, which complements the Gas WAM system. In the past, Eversource Energy did not employ an enterprise mobile technology solution for its field operations workforce (i.e., field supervisors, field workers and contractors). Consequently, job package information was delivered to the field workforce by way of a paper-based process that was manual and labor intensive. This “mobility gap” significantly impeded the Company’s ability to meet or exceed the expectations of customers who have grown accustomed to being
served by field mobility solutions as a part of their day-to-day interactions with other
service providers. This work process was highly inefficient and did not provide timely
work status updates to customers or employees.

In response to these challenges, the Company invested in the Mobile Gas WAM project
to drive operational efficiencies by significantly improving business processes and
technology used day-to-day by field operations. The Mobile Gas WAM project was
placed in service for the Eversource Energy gas operating companies in August 2019.
Implementation of Mobile WAM for the Eversource Energy electric operating
companies will take place at a later date.

The Mobile Gas WAM project provides new capabilities to field workers, which
includes access to GIS, maps, standards, procedures and email/texting to provide them
with more timely, accurate information to perform construction, maintenance,
inspection, compliance and emergency gas work activities required to deliver safe and
reliable energy and a better customer experience. NSTAR Gas has also provided
mobile devices to all its internal field crews, and to external contractors, to give them
real time access to the most up-to-date maps and records.

The Company is in the process of adding additional functionality enhancements to the
Gas WAM and Mobile Gas WAM systems to:

- Provide timely efficient review, approval and processing of Gas contractor
 billing and payments.
- Enhance business processes for leak, corrosion, instrument calibration,
critical valve and regulator management.

- Provide timely, accurate operational and regulatory compliance reporting in conjunction with the corporate data analytics platform being developed.
- Enhance asset data accuracy and reduce cycle times for GIS field data updates.

The Gas WAM and Mobile Gas WAM projects are also discussed in the joint testimony of Company Witnesses Landry and Desrosiers. The Company has incorporated the costs of the Gas WAM system and the Mobile Gas WAM project as post-test year adjustments to the cost of service presented in this proceeding, as described in the joint testimony of Company Witnesses Horton and Botelho.

Q. Please also describe the Mobile Gas Meter Services project.

A. As part of the enterprise-wide effort to modernize and streamline its systems to improve operational efficiencies, as well as the customer experience, Eversource Energy is in the process of implementing the Mobile Gas Meter Services (“MGMS”) project. The MGMS project is designed to (1) standardize and streamline the Gas Meter Services dispatch and field execution processes, (2) replace two disparate legacy systems, pCad and Advantex, (3) provide new and improved appointment booking functionality for the Company’s customer service representatives (“CSRs”), as well as for those customers who are utilizing the self-service appointment booking feature, and (4) provide streamlined visibility into all Gas meter services for the Company’s CSRs. This project will also support the Gas Meter Services business, with the following as its key objectives: establish a single unified business process for gas meter services and
customer request process for gas meter services work; improve workload and resource utilization by leveraging automatic scheduling, route optimization, and “Best Fit” appointment booking; improve customer experience by refining the appointment process and working towards reducing the customer appointment window; and providing timely job status information to CSRs and customers. The MGMS project is currently in the testing phase and, assuming testing is successful, the Company anticipates that this project will be placed in service by the first quarter of 2020.

The MGMS project is also discussed in the joint testimony of Company Witnesses Landry and Desrosiers. Company Witnesses Horton and Botelho discuss the Company’s proposal for cost recovery of this investment in the Revenue Requirements testimony.

V. PROGRESS ON EMISSIONS REDUCTIONS

Q. Mr. Akley, you have testified that safety is the top priority in the gas industry, are there other overarching priorities that you would like to discuss?

A. Yes. At Eversource Energy, our commitment to environmental sustainability is an important part of our daily business operations, and a key aspect of our vision to become the best energy company in the nation. There is an increased urgency to “decarbonize” energy resources with the ultimate goal of delivering a clean energy future. And when it comes to natural gas decarbonization, there are several opportunities to reduce emissions associated with the infrastructure in the ground today as well as future opportunities around renewable natural gas, natural gas demand
reduction, and geothermal distribution. Exploring the potential of a wide variety of options and solutions is critical as the Commonwealth seeks to reduce greenhouse gas emissions to meet the goals set forth in the Global Warming Solutions Act.

A. Reducing GHG Emissions on the Distribution System

Q. How does the Company work to reduce greenhouse gas emissions as part of its operations?

A. Replacement of aging bare steel, cast-iron and other leak-prone gas infrastructure is a top priority to minimize the potential for gas leaks and the release of greenhouse gases into the atmosphere. Since 2012, the Company has replaced 220 miles of leak-prone gas main resulting in reductions of approximately 226 metric tonnes of methane annually (5,647 mt CO2e). The Company is on track to replace the remainder of its leak prone facilities within 20 years.\(^8\) As shown in the graph below, capital spending on GSEP doubled between 2015 and 2019 and it is expected to triple over the course of the PBR Plan term.\(^9\)

\(^8\) At the outset of the GSEP, the Department approved a 25-year replacement timeline for the Company with an anticipated replacement rate of 50 miles per year following an initial five-year ramp-up period. In the first four years of the GSEP, the Company has met or exceeded the targeted miles of replacement and expects that the miles of main replaced in 2019 will meet the replacement target approved in D.P.U. 18-GSEP-06.

\(^9\) During the first five years of the GSEP, the Company has gained significant experience in managing the program and secured the necessary resources, both internal and external, to safely and efficiently implement a program of this importance and magnitude. Thus, the Company anticipates reaching a run rate of 60 miles of main replacement per year within the next two years. The Company anticipates that this ramp-up could reduce the overall GSEP replacement timeline to less than 25 years, subject to unforeseen circumstances.
In March 2016, Eversource Energy, along with almost 40 other American Gas Association members, became a founding member of the U.S. Environmental Protection Agency’s Natural Gas STAR Methane Challenge Program, in which natural gas utilities are working to reduce greenhouse gas emissions. The companies, which together serve 66 percent of natural gas customers in the United States, are making and tracking commitments to reduce emissions; showcase efforts to improve air quality; and reduce the remaining inventory of bare steel and cast-iron mains.

Q. Has the Company worked with external stakeholders to target the reduction of greenhouse gas emissions as part of its operations?

A. In 2016, as part of An Act to Promote Energy Diversity (“Energy Diversity Act”), Massachusetts required utilities to repair Grade 3 leaks with a “significant environmental impact.” St. 2016 c. 188, § 11. However, because gas companies had
been mandated in the past to focus on impacts to life and property and not emissions, the industry needed to develop new methods to identify leaks with a significant environmental impact. NSTAR Gas has worked collaboratively with the Home Energy Efficiency Team (“HEET”), Gas Safety Inc., Mothers Out Front and the other Massachusetts LDCs to field-test multiple methods to identify leaks with a significant environmental impact.

NSTAR Gas developed a measurement tool for this purpose, referred to as a FLUXbar method, which compares and confirms the emissions of leaks through a proxy measure of flux. The FLUXbar method is a relatively straightforward approach to confirm leaks with a significant environmental impact and meets the Company’s existing protocols. Specifically, a FLUXbar is a bar-hole purge tool modified to gently vacuum air through a drill-hole located over a leak while a combustible gas indicator (“CGI”) measures the percent of gas in that airflow. 220 CMR 114.07(2). The FLUXbar method, which measures the steady-state flow rate of a leak, is an accurate method of measuring the size of a leak and allows for comparison and ranking of leaks by size. The Department, the Company and other Massachusetts LDCs, as well as other stakeholders will be better able to judge the accuracy and viability of the leak-extent method as a means of identifying and classifying Grade Three leaks with a significant environmental impact using the additional information available from the FLUXbar measurements. D.P.U. 16-31-C, at 20 (2019); 220 CMR 114.07(3).
Q. What other strategies is the Company employing to reduce emissions on the system?

A. One of the methods the Company is employing to reduce emissions is to prevent incidents causing damages to the system that can result in releases of natural gas into the atmosphere. As discussed above, the Company is implementing a comprehensive PSMS, part of which includes high-standards for marking the distribution system prior to excavation, as well as training locators, and educating third-party excavators. The Company is proposing to track damages as a PBR scorecard metric as part of this proceeding. Also, the Company is planning to hire a new Director of Clean Gas Technologies who will be tasked with ensuring that all the Company’s processes and procedures are developed in a manner that minimizes adverse impacts to the environment.

Q. Is the Company exploring other potential solutions to reduce greenhouse gas emissions?

A. Yes. The Company is in the process of looking at other aspects of its operating practices, such as venting and blow-downs, to determine if those practices may be safely modified or refined to further mitigate emissions. For example, the Company is looking at the feasibility of using draw-down compressors to recover all, or a portion, of vented gas back into the gas distribution system.

Also, the Company is proposing two demonstration projects in this proceeding that could further reduce greenhouse gas emissions. The first proposal is designed to examine whether a natural gas demand program can mitigate natural gas demand spikes
and infrastructure constraints. The second proposal is designed to deploy geothermal
distribution in order to test the viability of a geothermal business model, and to provide
the Company and stakeholders with real-world experience on such applications. These
two demonstration projects are discussed in the joint testimony of Company Witnesses
Conner and Goldman. In addition to these two demonstration projects, the Company
is looking into cleaner energy supply options, such as Renewable Natural Gas and
environmentally responsible natural gas supply, which is discussed in the next section.

B. Renewable Natural Gas

Q. Please summarize the opportunities the Company is exploring to reduce the
environmental impact and enhance the sustainability of natural gas supply for its
customers.

A. The Company has been actively exploring opportunities to improve the sustainability
of the natural gas it supplies to its Default Service customers. The Company is seeking
opportunities to add renewable natural gas to its resource portfolio, while at the same
time pursuing available means of minimizing the emissions and environmental impact
of conventional natural gas supply.

Q. What is “Renewable Natural Gas”?

A. Renewable Natural Gas (“RNG”) is gas that is recovered from a waste stream; is
refined to a pipeline-quality standard; and is introduced into a gas pipeline and
ultimately delivered to customers. The gas, if not refined and distributed to customers
as natural gas supply, would be emitted to the atmosphere as methane or flared and
emitted as carbon dioxide. Therefore, RNG represents a low-carbon source of gas
supply that can serve the natural gas needs of the Company’s customers and contribute
to the state’s emission reduction targets.

Q. **Is RNG used in natural gas systems today?**

A. Yes. Examples of RNG use in local distribution gas systems have existed for several
years and it is a growing source of natural gas supply in several regions. Commercially
usable methane has been recovered from landfills for many years. There are several
examples where landfill gas is being processed and injected into natural gas distribution
systems, as well as other examples of landfill gas being used directly for power
generation.\(^{10}\) One specific example is the Fresh Kills landfill in Staten Island, New
York, which has been operating for almost 30 years and provides 1.8 billion cubic feet
(Bcf) of pipeline quality gas annually.\(^{11}\) Additional sources of renewable natural gas
are now being developed or evaluated as demand for low and zero-emission fuel
sources increases.

Q. **In addition to the capture of methane, are there any other benefits to using RNG?**

A. Yes. RNG can be readily produced locally from available waste streams, with the
impact of increasing available natural gas supply. Locally produced RNG may also
provide additional revenue streams for publicly owned and financially challenged

\(^{10}\) See United States Environmental Protection Agency, Landfill Methane Outreach Program (LMOP),

facilities, such as waste recycling operations, wastewater treatment plants and retired landfills.

Q. How is RNG delivered to a gas distribution system for use?
A. To be used in a gas distribution system, RNG must first be processed to a pipeline standard. Natural gas is mostly methane (CH4). Waste gas from wastewater treatment plants, landfills or dairy farms contain only 40-60 percent methane, the rest is CO2, moisture and other contaminants. The waste gas is passed through various filters to remove impurities and is then piped or injected into the local distribution system.

Q. What systems and infrastructure are required to use RNG?
A. Processing equipment is required to successfully recover waste gas and process it to pipeline standards as described above. In addition, infrastructure may be required to enable its consumption. Additional infrastructure requirements may be limited when RNG supply is located in areas with a large gas load or is proximate to an interstate pipeline. However, if the RNG supply must be transported to a point of consumption, then main extensions or expansions may be required. In some cases, the trucking of RNG to injection points on the distribution system may be the more cost-effective option.

Q. What quantity of RNG natural gas is the Company anticipating would be added to the resource portfolio while minimizing cost impacts?
A. The Company anticipates that RNG supplies will come at a higher cost than traditional supplies due to the necessary integration of capital requirements to prepare the gas for
injection into the distribution system and, therefore, any project in the future will likely require a multi-year contract commitment, subject to approval by the Department. As a result, at this time the Company is not requesting or estimating an annual supply percentage associated with RNG. That will be determined on a case-by-case basis as opportunities arise and are reviewed and approved by the Department.

Q. What is the Company proposing in this case in relation to addition of RNG to the NSTAR Gas resource portfolio?

A. The Company is not requesting that the Department take specific action in this case. The Company has not yet identified a specific opportunity to procure RNG as part of its supply portfolio for Basic Service gas customers. As yet, few supplies are available on terms that align with the Company’s existing procurement practices for gas supply. However, the Company views the use of RNG as an important piece of the overall strategy for serving gas customers in the future and a statement by the Department that gas companies should be pursuing this strategy will help to develop market opportunities.

As with other market transformation initiatives, RNG will need to be evaluated differently due to the fact that it creates substantial environmental benefit but will require a level of capital investment not typical for gas-supply contracts. This will mean that long-term contracts will be necessary to support the development of these types of resources similar to the experience with wind power and other renewable resources. The RNG market is evolving and growing, and the Company is hopeful
opportunities will emerge at reasonable cost to customers. The Company will continue
to monitor RNG market development for procurement opportunities and will conduct
competitive requests for proposals if it finds RNG quantities may be procured at a cost
warranted by the environmental and other non-price benefits. The Company
anticipates that, ultimately, it may be possible to factor in proceeds from renewable gas
attributes or other offsetting revenues that may lower the ultimate cost to customers.
In any event, any contract that the Company may decide to enter into will require the
Department’s pre-approval with consideration of the environmental benefits that are
attendant to the agreement.

C. Environmentally Responsible Gas Supply

Q. Are there any steps that the Company can take to address the environmental
impact of its conventional natural gas supply?

A. Yes. Conventionally sourced natural gas will remain essential to meeting the thermal
energy requirements of NSTAR Gas customers. However, the Company is exploring
opportunities to meet the needs of customers in the most environmentally responsible
manner it can through the purchase of gas supply sourced from producers meeting
certain requirements for the use of clean technology in the production process.

Q. What is “environmentally responsible natural gas”?

A. “Environmentally responsible natural gas” is natural gas that is produced from high
integrity wells leveraging new technology that has less impact on the environment than
traditional technologies. Environmentally responsible gas supply is evaluated and
certified by a third party as meeting certain criteria and qualifications for environmentally sound production.

Third-party ratings include evaluation of techniques such as risk management, wellbore integrity, subsurface integrity monitoring, environmental programs, spill prevention, operator process and procedures. Additionally, ratings are based on how well the producer has designed well-completions and production to minimize the loss of methane by approaches including: use of vapor recovery units, electric driven pumps, automatic facility shut down upon emission control malfunction, use of solar powered controllers, and the installation of methane sensors that will automatically shut when methane is detected.

Q. **What third-party rating programs exist for environmentally responsible natural gas?**

A. Independent Energy Standards Corporation (IES) launched the Trustwell™ ratings system in 2018 and the first recorded purchase transaction was executed by New Jersey Natural Gas in the same year. The Trustwell™ ratings system is intended to target the top producers and companies that employ many best practices across a range of risks and impacts. Ratings are segmented into Silver, Gold and Platinum levels. A Trustwell™ Gold Rating is intended to target the top 25 percent of producers. The program has scaled rapidly since launch and included 2,500 wells from 10 suppliers as of April 2019.
Q. What are the benefits of sourcing environmentally responsible natural gas?

A. There are a range of benefits associated with sourcing environmentally responsible natural gas supply. The purchase of environmentally responsible natural gas supply results in quantifiable greenhouse gas reductions because the supplies produced for consumption have lower methane intensity (based on loss rates) than other sources. Environmentally responsible natural gas supplies are also verified to have lower water and community impacts. Perhaps the most important benefit of procuring environmentally responsible natural gas supply is the encouragement of business practices within the natural gas sector that reduce environmental impact substantially. By procuring environmentally responsible natural gas supply, the Company and its customers will drive change in the production of natural gas supply, encouraging more producers to adopt rigorous environmental protections and controls in their operations.

Q. Is there a higher cost associated with environmentally responsible natural gas supply?

A. Yes. Due to the investment that is needed to produce natural gas at a lower environmental impact, environmentally responsible natural gas supplies come at a slightly higher cost. Based on discussions with suppliers, the Company anticipates that environmentally responsible natural gas supply could be procured at a cost that is no more than 5 to 10 percent higher than the commodity cost of traditional sources of natural gas. Given the benefits that are inherent in the use of gas resources that are produced at a lower environmental impact, this cost difference is reasonable and will
support the growth of this market segment without placing significant rate impacts on customers.

Q. How does the Company propose to procure environmentally responsible natural gas supply?

A. Each year, the Company conducts a process to procure the gas supplies necessary to meet sendout requirements on a peak day and peak season basis over an annual period. These procurements are short-term arrangements for supply resources and do not represent long-term capacity arrangements that are otherwise part of the Company’s resource portfolio. In this case, the Company is requesting that the Department authorize the Company to procure environmentally responsible natural gas supply through its normal, annual competitive solicitations and to enter into arrangements to purchase environmentally responsible natural gas supply for terms of no more than one year in duration. Any eligible supplies of environmentally responsible natural gas will require third party-certification. The competitive procurement of supply for terms of one year or less is consistent with the Company’s current procurement practices for Basic Service.

Q. What quantity of environmentally responsible natural gas is the Company anticipating would be utilized within an annual period?

A. The Company anticipates that it would be possible to balance rate-impact considerations by limiting the portion of supply procured in the initial phases. Depending on how circumstances evolve in the marketplace, the Company anticipates gradually expanding the portion of supply procured from environmentally responsible
producers based on the reasonableness of the cost differential as compared to conventional natural gas supply. The Company anticipates that it could source up to three percent of its supply from environmentally responsible natural gas sources based on availability without significant rate impacts and would seek to increase that by up to one percent per year if achievable while maintaining modest rate impacts.

Q. How does the Company propose to recover the costs of environmentally responsible natural gas supply if procured as part of the annual process?

A. The cost of environmentally sourced natural gas supply would be recoverable through the Cost of Gas Adjustment Clause (“CGAC”), just as the costs of other gas supply resources are recovered. Currently, the Company conducts annual requests for proposals to procure gas supply for each winter heating season. The resulting purchase contracts are for less than one year in duration and do not require the Department’s pre-approval. If approved by the Department in this case, the Company would be pre-authorized to purchase environmentally responsible gas supplies even if those supplies came in at a slightly higher cost not to exceed 10 percent of the regular gas supply resource available through the solicitation. As it currently stands, the Company would not be in a position to purchase those supplies because the supplies are not likely to be the least-cost resource available through the solicitation. If approved by the Department, the net increase in gas costs would be less than one percent and other components of gas-supply cost would remain unchanged relative to traditional procurement practices. Of course, the Company would produce all necessary
documentation to the Department at the time that the CGAC is approved to document
that the procurement was in line with the Department’s authorization.

VI. DESCRIPTION OF THE PROPOSED PBR PLAN

Q. Mr. Horton, would you please review the mechanics of the Company’s proposed
PBR framework?

A. Yes. As noted in the introduction to this testimony, the Company’s proposed PBR Plan
encompasses: (1) implementation of a PBRM with a five-year initial term and provision
for extension; and (2) recovery of two, clean energy demonstration projects that are
designed to test the feasibility of a natural gas demand response program and to assess
the viability of geothermal distribution.

The PBRM is designed as a “revenue per customer cap” formula that would be used to
adjust rates on an annual basis. The PBRM formula is derived through economic
analysis of utility cost trends as indicated by measures of inflation, input prices and
total factor productivity. The specific revenue per customer cap formula proposed by
the Company is further discussed in the joint testimony of Company Witnesses Julia
Frayer and Marie Fagan.

The revenue per customer cap formula is designed to work in tandem with the RDM
that will continue for NSTAR Gas in this proceeding as described further below. The
proposed PBR Plan tariff is presented in Exhibit ES-RDC/LMC-2, accompanying the
joint testimony of Richard D. Chin and Lisa Cullen and is designated as M.D.P.U. No. 411. The first rate change pursuant to the PBRM would not occur until November 1,
2 Q. Mr. Horton, please list the elements of the Company’s proposed PBRM.

A. The Company’s proposed PBRM is comprised of five elements:

1. An inflation index;
2. A “productivity offset,” or X factor;
3. A “Z” factor for exogenous costs;
4. A “Y” factor for the recovery of incremental costs associated with the Company’s two clean energy demonstration projects; and
5. An earning-sharing mechanism (“ESM”).

The Company is also proposing to make annual compliance filings to implement the rate changes in accordance with the PBR Plan. In the annual PBR Plan compliance filings, the Company would report on its progress towards the (1) performance scorecard targets; and (2) the two proposed demonstration projects.

Q. Please describe how the PBRM would interact with the Company’s RDM.

A. The Company’s current RDM is based on a revenue per customer cap formula using a Benchmark Base Revenue per Customer or “BRPC,” reflecting the base revenue authorized by the Department in the most recent rate case or other proceeding that results in an adjustment to base rates. Revenue Decoupling Adjustment Mechanism, M.D.P.U. No. 409C, page 3. The Company’s proposed PBRM will determine the Benchmark Base Revenue per Customer to be used in the RDM each year. Rather than
remaining fixed as a result of the Department’s authorization of a base revenue requirement in a general rate proceeding, the BRPC will be adjusted annually pursuant to the terms of the PBR Plan in accordance with the PBRM indexing formula described in the joint testimony of Company Witnesses Julia Frayer and Marie Fagan. This adjustment will reflect the application of the inflation factor, X factor, Z factor (if applicable), the ESM (if applicable), and the Y factor, all of which are described in more detail below.

Q. What is the revenue per customer cap formula supported by the economic analysis performed by Ms. Frayer and Ms. Fagan?

A. The joint testimony of Company Witnesses Julia Frayer and Marie Fagan details the economic analysis supporting the revenue-per-customer cap formula under an “I-X” rate adjustment mechanism. The “I-X” formula would serve as the basis for an annual adjustment to rates with “I” representing a measure of economy-wide output inflation, i.e., the Gross Domestic Product-Price Index (“GDP-PI”), as measured by the U.S. Commerce Department, and “X” representing a measure of expected productivity growth. The X factor is based on the differences in productivity and input price growth between the gas distribution industry and the overall economy. Combined with the “I” factor, “I-X” represents the expected unit cost performance of an average performing company in the industry.
Q. Mr. Horton, please describe the inflation index that will be used in the PBRM formula.

A. The Department has found that GDP-PI is the most accurate and relevant measure of output price changes for the bundle of goods and services whose total factor productivity ("TFP") growth is measured by the U.S. Department of Commerce Bureau of Labor Statistics ("BLS") and is: (1) readily available; (2) more stable than other inflation measures; and (3) maintained on a timely basis. D.P.U. 17-05, at 393. Therefore, the Company is proposing that inflation be determined each year of the PBRM using the GDP-PI, as published by the BLS. Consistent with the Department’s prior rulings on the GDP-PI, the inflation index would be calculated as the percentage change between the current year’s GDP-PI and the prior year’s GDP-PI. For each year, the GDP-PI would be calculated as the average of the most recent four quarterly measures of GDP-PI as of the second quarter of the year to align with the Company’s annual PBR filing schedule.

Q. Please describe the “X” factor.

A. The Company’s “X” factor, or productivity offset, was determined by Ms. Frayer and Ms. Fagan’s TFP study of the trends of gas industry participants in the Northeast Region of the U.S., as defined by BLS. The X factor is based on the differences in productivity and input price growth between the natural gas distribution industry in the Northeast and the overall economy. As detailed in Ms. Frayer and Ms. Fagan’s joint testimony, the Company’s X factor is negative 1.3 percent.
Q. **Is the Company proposing any adjustment to the traditional PBR Plan structure to account for the existence of the GSEP mechanism?**

A. No. In preparing its proposals for this proceeding, the Company worked closely with LEI to assess whether there was a conceptual, methodological or economic principle indicating that there would be overlap that would occur if the PBR Plan were implemented in conjunction with the GSEP mechanism applying under Massachusetts law. As explained in the joint testimony of Company Witnesses Julia Frayer and Marie Fagan, there is no overlap between these two mechanisms. Therefore, in the opinion of Ms. Frayer and Ms. Fagan, no adjustment is needed to the X-factor to account for the legislated GSEP program in Massachusetts. The basis for her opinion is explained in her testimony and the Company agrees with her assessment.

Q. **What is your understanding as to the theoretical basis for a consumer dividend/stretch factor deducted from the X factor?**

A. As described in the joint testimony of Ms. Frayer and Ms. Fagan, under the revenue-per-customer cap construct, the Department would be setting a trajectory for future rates over the term of the PBR Plan. The theoretical basis of the consumer dividend is the expectation that, over the term of the PBR Plan, the Company should be able to achieve efficiency improvements not embedded in the “cast-off” rates that will take effect as a result of this rate proceeding, as a product of the PBR Plan.
Q. **What is the method that may be used to assess the efficiency improvement possible as a result of implementing performance-based ratemaking?**

A. As discussed in the joint testimony of Company Witnesses Julia Frayer and Marie Fagan, cost benchmarking provides empirical evidence on the relative efficiency of a given utility to its peers. Examination of the utility’s relative efficiency to its peers provides an indication of the margin of opportunity that the utility has to identify and achieve cost savings that are over and above existing cost levels. The underlying assumption is that the more efficient a utility is relative to its peers, the less opportunity the utility has to achieve cost savings in its operations. A consumer dividend or “stretch factor” is designed to motivate a relatively inefficient utility to catch up to the cost performance of its peers. For the relatively efficient company, the inclusion of a stretch factor fails to create the desired incentive because the increment of improved cost performance represented by the factor essentially constitutes a futile exercise, i.e., no incentive is created where the achievement of the requisite cost savings is a virtual impossibility.

Q. **Is the Company proposing a consumer dividend or other stretch factor as part of the PBRM?**

A. No, as discussed in the joint testimony of Ms. Frayer and Ms. Fagan, the results of the TFP benchmarking study show that NSTAR Gas is relatively efficient as compared to its peers. Therefore, a stretch factor is not appropriate for inclusion as part of the PBRM.
Q. Please describe the “Z” factor.

A. The “Z” factor accounts for operating cost changes that arise from factors beyond the control of the Company. The Z factor is necessary because the Company is committing to refrain from filing a petition for a change in base distribution rates during the five-year term of the PBR Plan. Therefore, the revenue-per-customer cap needs to be adjusted to address costs changes arising due to events specific to the gas distribution industry that occur beyond the control of the Company. Exogenous events cause positive or negative cost changes that are not reflected in the GDP-PI. Examples of exogenous events with cost implications include, but are not limited to, incremental costs resulting from: (a) changes in tax laws that uniquely affect the natural gas distribution industry; (b) accounting changes unique to the natural gas distribution industry; and (c) regulatory, judicial, or legislative changes that uniquely affect the natural gas distribution industry.12

Q. What is the Company’s proposal with respect to exogenous costs?

A. In this case, the Company is proposing a two-part exogenous cost mechanism, which is necessary to allow the Company to commit to a five-year stay-out in the very uncertain circumstances that exist in today’s operating environment. The “two-part” exogenous event framework would be comprised of: (1) the traditional exogenous event cost adjustment subject to the Department’s established criteria; and (2) a

12 D.P.U. 17-05, at 396.
targeted exogenous event cost adjustment arising due to pipeline safety requirements imposed after November 8, 2019, with demonstrated cost impacts on or after the start date of the PBRM, or November 1, 2020.13

Q. Would you please explain each of these two parts in greater detail?

A. Yes. First, the Department has consistently established an exogenous cost provision within the performance-based ratemaking plans that it has approved in the past, which allows for cost adjustments in three instances, which are to address: (a) changes in tax laws that uniquely affect the natural gas distribution industry; (b) accounting changes unique to the natural gas distribution industry; and (c) regulatory, judicial, or legislative changes that uniquely affect the natural gas distribution industry. The Company is proposing to incorporate this traditional exogenous cost adjustment factor, subject to a significance threshold of $700,000.14 The traditional exogenous factor would be triggered only if the cost in question fits into the foregoing criteria and exceeds the significance threshold of $700,000, in relation to O&M cost changes experienced in a single year. If meeting the threshold of $700,000, the cost change would constitute a significant cost change outside the control of the Company, warranting exogenous cost

13 Although the effective date of new rates will be October 1, 2020, the Company is proposing to have new rates, including the GSEAF, take effect for billing purposes on November 1, 2020 to achieve alignment with other rate changes that customers will experience on November 1, 2020.

14 The Department has previously applied a significance threshold to determine if cost changes are eligible for treatment as an exogenous event by multiplying total operating revenues by 0.001253. NSTAR Electric Company and Western Massachusetts Electric Company, each d/b/a Eversource Energy, D.P.U. 17-05, at 397 (2017). For NSTAR Gas, the calculation produces a significance threshold of $626,369 ($499,895,237 * 0.001253).
recovery. Each year after commencement of the PBR Plan, the significance threshold would be subject to annual adjustments based on changes in GDP-PI.

A second set of criteria for exogenous cost changes would apply to address significant cost changes arising as a result of new or modified pipeline safety requirements imposed after the start date of the PBRM. Under this second set of criteria, an exogenous event would occur where a significant cost change is caused by mandated changes in law, regulations, requirements, standards or practices relating to gas-safety directives arising from investigations conducted by the NTSB, PHMSA, the Department or any investigation conducted on behalf of the Department by an outside consultant or expert. This exogenous mechanism would also have a significance threshold of $700,000 for an annual cost impact; however, the mechanism would allow for recovery of both capital and expense type cost changes, with the $700,000 threshold representing the annual impact in either or both categories, individually (i.e., the $700,000 threshold would apply separately to O&M and capital). Each year after commencement of the PBR Plan, the significance threshold would be subject to annual adjustments based on changes in GDP-PI.

Q. Why is it necessary to establish a two-part exogenous cost mechanism?
A. The Company is petitioning the Department for review and implementation of the PBR Plan at a time of great uncertainty for the gas industry in Massachusetts. As the Company’s expert witness Julia Frayer has indicated, the PBR framework is a framework that is effective in a “status quo” environment, i.e., where economic
circumstances in the past are a reasonably sound indicator of the future. Where
economic circumstances in the past are not indicative of the future, risk is created that
has the potential to draw the PBR Plan out of alignment. In this case, it is clear that the
business environment for natural gas companies in New England (and beyond) is
changing in numerous ways due to environmental policy, infrastructure constraints and
ever-increasing public-safety considerations. However, these dynamics would not
necessarily drive the need to establish a two-part exogenous cost mechanism in
isolation — meaning that the Company accepts the responsibility of addressing these
changing dynamics during the PBR Plan term within the confines of the annual PBR
adjustment.

Instead, the deep concern that the Company has in commencing a PBR Plan at this
time, with a five-year stay-out commitment, is that in Massachusetts there are
particular, unique circumstances occurring that have the potential to be substantially
disruptive to the PBR Plan. For example, it is possible that discrete directives for gas
companies will come out of the NTSB or Dynamic Risk investigations into the
Merrimack Valley event or that new legislation, regulations or standards and practices
will follow that are not known or anticipated at this date. Directives for gas companies
arising from these investigations have the potential to require significant changes to the
Company’s operating processes and associated staffing levels, or perhaps will require
the installation of infrastructure that is not currently anticipated by the Company.
Therefore, the Company is requesting that the Department consider these unique
circumstances and establish the two-part exogenous cost provision allowing the Company to petition the Department for recovery of costs arising from pipeline safety directives following from the Merrimack Valley event.

Accordingly, the second part of the exogenous cost factor is designed to address the uncertainty associated with the imposition of specific directives affecting operating processes and associated staffing levels or infrastructure installations. To qualify for a pipeline safety-related exogenous cost, the Company will need to trace the cost change to a specific directive or set of directives. Over the next five years, it is possible that increasing requirements for public safety, emissions reductions and other industry dynamics will not arise so discretely as to allow unexpected, unusual cost changes to be addressed by the traditional criteria for an exogenous cost change. Therefore, the second set of criteria is designed to allow for consideration of cost changes that are more organic, yet still directly related to changes in operating practices required by pipeline safety oversight entities.

Q. Please describe the “Y” factor.
A. As described in the joint testimony of Company Witnesses Conner and Goldman, the Company is proposing two demonstration projects that will move the Commonwealth forward on clean energy innovation, reduce greenhouse gas emissions, and proactively test the abilities and potential benefits of new technologies and innovative business models. These two demonstration projects are the following, as described in the testimony of Ms. Conner and Mr. Goldman:
• **Gas Demand Response:** The Company is proposing a gas demand response demonstration project that would have a duration of three years. The demonstration project is designed to test whether a gas demand-response program is effective in shaving peak demand; alleviating temporary physical pipeline constraints; reducing the amount of pipeline capacity needed to meet sendout requirements; and reducing greenhouse gas emissions through reductions in overall gas consumption.

• **Geothermal Distribution:** The Company is proposing a geothermal distribution demonstration project to test the viability of a non-gas thermal distribution model; assess the enabling technology; and evaluate the costs and benefits.

The “Y” factor will allow for the recovery of costs associated with the implementation of these two demonstration projects. The Company is proposing to amortize the costs of the demonstration projects over the five-year term of the PBR plan, as actual costs are incurred for the programs. The Company will update this factor to be included in the PBRM formula as part of its annual compliance filing to be submitted on September 15th of each year. Within that filing, the Company will submit documentation in support of the costs incurred for the demonstrations and report on the progress towards the identified objectives described further below. The Company will file reports annually on the progress of the demonstration projects and any stakeholder feedback received upon authorization from the Department to proceed with the execution of the demonstration projects in this proceeding.
Q. Please describe the Company’s proposed ESM.

A. The Company is proposing to adopt the ESM that the Department approved for NSTAR Electric, with certain modifications. In this case, the Company is proposing an ESM with a 100 basis-point deadband above and below the allowed ROE to preserve the incentives for the PBR plan and to assure that the PBR Plan does not fall out of alignment with actual cost circumstances. The Company proposes to share excess/deficient earnings with customers outside of this deadband on a 75 (customers)/25 (shareholders) basis, whether the ROE is 100 basis points above or below the authorized ROE. Accordingly, the Company’s proposed ESM is designed to provide customers with a near-term benefit of productivity gains, if gains are produced above a deadband level, but also to allow the Company an adjustment if the PBRM is falling out of alignment with the Company’s actual cost obligations.

Q. Why is the Company requesting that the Department establish a symmetrical ESM structure in this PBR Plan, with a narrower deadband than would typically apply?

A. As we stated above, the Company is coming to the Department for review and implementation of the PBR Plan at a time of great uncertainty for the gas industry in Massachusetts. The concern that the Company has in commencing a PBR Plan at this time, with a five-year stay-out commitment is that in Massachusetts there are particular, unique circumstances occurring that have the potential to be substantially disruptive to the PBR Plan. A symmetrical ESM will assure that unexpected or unusual cost changes that are not addressed by the PBRM will not have a tendency to cause such substantial
earnings attrition that the five-year term becomes overly detrimental to the Company.

The Company is committing to a five-year term in a time of substantial uncertainty and the Company has concerns that circumstances may overtake the PBRM given its reliance on an X factor that is specified based on historical data not indicative of current circumstances.

Q. How does the Company propose to compute the ROE to be used in the earnings-sharing mechanism?

A. Earnings Sharing provides an important protection for customers in the event that expenses increase at a rate lower than the revenue increases generated by the PBRM. For earning-sharing purposes, the ROE would be calculated as Total Net Utility Income, less other amounts as described in the testimony, divided by Average Common Equity.\(^\text{15}\) ROE would be computed to exclude Department-approved incentive payments, such as energy efficiency incentives, and would also exclude service-quality penalties (if any), as well as any amounts recognized in the current period resulting from regulatory or court settlements or decisions related to prior periods (if any). ROE would be calculated using the earnings available for common equity and the capital structure approved by the Department in this proceeding. Any adjustment would be subject to investigation and a full adjudicatory hearing before the Department.

\(^{15}\) Common Equity = (Total Company capitalization (including long term debt, preferred stock, and common equity, all per the DPU Annual Return) multiplied by the percentage Common Equity approved in D.P.U. 19-120.)
In the event that the Company’s actual Distribution ROE exceeds or falls below the earnings sharing threshold, the difference between actual earnings and earnings calculated at the authorized ROE shall be shared 25 percent to the Company and 75 percent to Customers. The Company’s ROE used as the basis for evaluating earnings sharing will be the ROE filed annually with the Department based on calendar year activity. Because new base rates will go into effect as a result of this proceeding in October 2020, calendar year 2021 will be the first year for which the Company will evaluate whether an earnings sharing adjustment is appropriate. For example, if applicable, the first ESM adjustment will be included in the PBRM adjustment effective on November 1, 2022 for calendar year 2021.

Q. **Mr. Horton, please describe the basis for the five-year plan term.**

A. One of the benefits of implementing a PBR plan is the reduced regulatory burden and the associated costs to customers due to the increased time between rate cases. *Massachusetts Electric Company and Nantucket Electric Company, each d/b/a National Grid, D.P.U. 18-150, at 53 (2019)* (accepting that a five-year stay out provision will generate diminished administrative burden and will result in efficiencies). In fact, without PBR, the Company expects that every other year would become a test year and an associated base-rate case would need to be filed to realign costs with customer rates. The Company’s proposed five-year stay out means that the PBR Plan is avoiding at least two rate cases.
A defined PBR plan term, accompanied by a “stay-out” provision during which time the Company cannot file a rate case, creates the appropriate incentives for the PBR Plan to be successful and provides the Department and other stakeholders the assurance of a reduced regulatory burden. For these reasons, the Company is volunteering to commit to a five-year stay-out for the PBR Plan. The Department approved the same term for NSTAR Electric in D.P.U. 17-05.

With a five-year term, the PBR plan would commence on November 1, 2020 and expire on October 31, 2025. Within the five-year term, there would be four annual PBRM adjustments taking effect beginning November 1, 2021 through November 1, 2024. The Company would be eligible to file rate schedules to put new distribution rates into effect no earlier than November 1, 2025, in keeping with the minimum five-year commitment to stay out.

Q. Is it possible that the Company would stay out longer than five years?

A. Yes. In Massachusetts, there is no requirement for gas companies to submit rate schedules in five-year increments, as there is for electric companies. Instead, gas companies are required to submit rate schedules on a schedule of no more than 10 years. Within the Company’s proposed PBR Plan, there are five elements that are critical to enable the Company to stay out longer than five years: (1) the two-part exogenous cost mechanism, discussed in this testimony; (2) the proposed symmetrical ESM with the narrower, 100 basis point deadband, discussed in this testimony; (3) approval of the Company’s proposed cost of capital (ROE and capital structure), discussed in the
testimony of Company Witness Hevert; (4) approval of the Company’s proposal to incorporate capital additions completed in 2019 and 2020 into rate base through a sequential process, discussed in the testimony of Company Witnesses Horton and Botelho; and (5) a provision that would allow the Company to incorporate capital additions completed through December 31, 2024 into rate base in Year 5 for rates effective November 1, 2025, which is discussed in this testimony, below.

Q. Please explain the Company’s perspective on the necessity of allowing the opportunity to roll-in capital to rate base to support the ongoing application of the PBR.

A. The single-most debilitating cost burden that utilities face is carrying the cost of capital investment not included in rate base. Given that the Company expects to sustain non-GSEP capital expenditures in the range of $85-$100 million annually over the five-year term, the Company would expect to be carrying more than $400 million of non-GSEP capital investment by the fifth year of the PBR (not incorporated to rate base), assuming the Department incorporates capital additions completed in 2019 and 2020 at the outset of the PBR Plan. If the Department approves the Company’s PBR Plan, as filed, the Company projects that the annual increases in revenue growth would be in the range of $8 million (plus or minus); however, the annual revenue requirement associated with $100+ million of capital investment is in the range of $13-15 million on a conservative basis. Increases in operating costs will also occur, although the Company will be working diligently to maintain the most efficient cost platform possible while meeting safety and reliability requirements.
The theory of the PBR Plan is that it should provide adequate revenues for the Company to maintain financial integrity as it works to address public safety and emissions reductions imperatives, but at the same time should impose (through the stay-out) the strongest possible incentive for the Company to be highly cost-efficient in those endeavors. However, given the growing capital requirements associated with non-GSEP investment on the gas system, the annual PBR adjustments will not be sufficient to keep the Company’s cost structure aligned with anticipated cost pressures over the five-year initial term, even if the I-X formula underlying the PBRM is perfectly calibrated. Accordingly, it is highly unlikely – despite any and all efficiency gains – that the PBR Plan will have the impact of eliminating the need for a base-rate proceeding in Year 5, due simply to the need to incorporate capital costs into rate base for rate recovery.

If the Department were to allow the Company to request to incorporate capital additions completed in the years 2021 through 2024 in Year 5, rather than submitting a full rate case, it might be possible for the Company to make a commitment for a stay-out extended up to five additional years. The Company will have to evaluate circumstances and the operation of the PBR Plan in Year 4 to determine whether such a commitment could be made. However, the opportunity to opt for a roll-in of capital additions made since the last rate case would be an important component for a prolonged stay-out favoring efficiencies in relation to O&M expenses.
Q. Why is it necessary for the Department to authorize a rate adjustment for base-rate additions in this case?

A. As noted above, with a five-year stay-out, the Company would be authorized to submit a base-rate filing prior to November 1, 2025 to request a change in base rates as of November 1, 2025 under G.L. c. 164, § 94. The Company is not surrendering its statutory right to file a base-rate petition to put new base rates into effect on November 1, 2025 in this proceeding because there is substantial uncertainty surrounding the operating environment for gas companies at this juncture. However, the Company intends to work hard to be in a position to extend the duration of the PBR Plan approved in this proceeding for an additional five-year term. However, the opportunity to incorporate incremental capital additions made on and after January 1, 2021 to rate base may be necessary to enable extension of the term. If so, the Company will need to submit project documentation to the Department in advance of the date of the rate change to incorporate the investment associated with those projects into rate base. The Company’s proposal in this case is intended to establish the path for that type of adjustment. Upon the expiration of the initial five-year term, it may also make sense to update the TFP study to demonstrates whether continuation of the X factor approved in this case is reasonable and appropriate.

Q. Is the Company’s commitment to a five-year stay-out contingent upon the Department’s approval of the Company’s proposed PBRM adjustment formula?

A. Yes. The Company has devoted considerable time, effort and resources to the development of a PBR Plan and PBRM adjustment that will provide sufficient support
to the Company’s operations over a five-year term in highly challenging, unique circumstances. If the Department materially modifies the PBRM and/or changes the PBRM without a valid methodological basis, the Company may not be in a position to commit to a rate-case stay-out over a five-year PBR plan term. Under these circumstances, the Company would have to re-evaluate whether it could commit to implement the PBR plan in conjunction with a five-year stay-out. If the PBR Plan (and PBRM) are not devised appropriately to allow a stay-out commitment, the Company will need to maintain its statutory discretion to file for base-rate relief. The Company would likely need to pursue such relief on a nearly biannual basis given the magnitude of cost changes anticipated over the next five years.

Q. Mr. Horton, what is the Company’s proposed schedule for annual PBR plan filings during each year of the five-year PBR plan term?

A. The Company is proposing to make an annual filing on September 15th of each year, detailing the PBRM adjustments to be effective as of November 1st each year. This filing will detail the figures associated with each PBRM element listed above; and calculate the PBRM percentage and dollar adjustment to the BRPC and base distribution rates. The first annual compliance filing would occur on September 15, 2021, for effect November 1, 2021, and would include only the PBRM adjustment and the roll-in of plant investment through 2020. The reporting of performance on scorecard metrics (discussed below), and the evaluation of earnings sharing (discussed above) would begin in the September 2022 PBR Plan compliance filing.
Q. If the Department were to structure the PBR Plan to allow for a roll-in of capital additions in Year 5, how would that schedule work?

A. If the Department were to decide that it makes sense to provide for an extension of the PBR beyond five years, the sequence should be the following:

- First annual PBR Adjustment, November 1, 2021.
- Base rates eligible for adjustment as of November 1, 2025 (annual PBR adjustments on November 1 of 2021, 2022, 2023, 2024).
- With the annual filing of 4th Annual PBR Adjustment Filing (made September 15, 2024 for effect November 1, 2024), NSTAR Gas would be required to indicate whether it has opted to stay out with a roll-in of capital additions rather than filing a rate case or other proposal for effect November 1, 2025.
- If NSTAR Gas opts for the roll-in of capital additions, it would be required to present capital projects documentation through December 31, 2024 to the Department on or before April 1, 2025 for review and roll-in as of November 1, 2025.
- Then the PBR Plan would proceed as is from there.

If the Department preferred, the Company could make a preliminary filing of project documentation through December 31, 2023 with the annual filing submitted September 15, 2024, which would then be updated to include documentation for the final eligible year (2024) in April 2025.

VII. SCORECARD METRICS

Q. What is the purpose and objective of the Company’s proposed scorecard metrics?

A. Eversource Energy employs a team of more than 8,000 dedicated staff with a strong commitment to providing safe, reliable and sustainable electric, gas and water service. Eversource Energy is proud of its ongoing, rigorous efforts to ensure the safe and
reliable delivery of natural gas in the Commonwealth and it will continue those efforts over the term of the PBR Plan and beyond. The implementation of the PBR Plan is designed to allow the Company and its employees to focus intently on serving the needs of the Gas Customer, rather than on the cyclical filing of base-rate cases to support operations. In this paradigm, the Company recognizes that there should be tangible improvements in the aspects of utility operations that are important to customers and most directly influence the customer’s confidence and satisfaction with gas service. Therefore, the Company’s performance management group has worked for several months with Gas Operations and the Customer Group to create a set of 12 metrics that will demonstrate tangible performance improvements for customers over the five-year term of the PBR Plan, if implemented by the Department in this proceeding.

Q. Is the Company already subject to service-quality metrics?

A. Yes, Company is subject to the Department’s Service Quality Guidelines (“SQ Guidelines”), which include penalty metrics for performance falling below the requirement benchmarks. Pursuant to G.L. c. 164, §§ 1E and 1I, all LDCs must file annual service-quality reports with the Department on or before March 1st. Each report compares annual performance by the respective LDC with the Department’s service-quality metrics established in Order Adopting Revised Service Quality Standards, D.P.U. 12-120-D (2015) and D.P.U. 12-120-D, Attachment A (2015). The SQ Guidelines establish three penalty measures for natural gas LDCs: (1) Class I and Class
II Odor Call Response; (2) Service Appointments Kept as Scheduled; and (3) Customer Complaints and Customer Credit Cases.

Under the first measure, the Company must respond to 97 percent of all Class I and Class II Odor Calls in 60 minutes and the Company is subject to a fixed revenue penalty formula if the metric is not met. SQ Guidelines at Sections IV.B.1, V.B.2. The second metric measures the percentage of scheduled Service Appointments met by Company personnel on the same day requested. SQ Guidelines at Section II.A. The Company is subject to a revenue penalty for this metric if performance is below the Company’s average performance. SQ Guidelines at Section V.B.3. The third metric measures residential customer contact with the Department, which is categorized by the Department as a residential Customer Complaint relating to payment and arrearage management plans, inability to pay, shut-off notices, and terminations. SQ Guidelines at Section II.B.2. The Company is subject to a revenue penalty for this metric if performance is below the Company’s average performance. SQ Guidelines at Section V.B.3.

Q. What is the purpose of scorecard metrics and why would the metrics be helpful to the Department and to the Company’s customers?

A. The Company’s proposed scorecard metrics are aligned with several of the Department’s policy objectives and will allow the Department and stakeholders to monitor the Company’s progress during the term of the PBR plan.
Q. Please describe the scorecard metrics that the Company is proposing in this proceeding.

A. The Company is proposing a series of 12 scorecard metrics, organized by three high-level categories summarized in the tables below.

<table>
<thead>
<tr>
<th>Scorecard Metric</th>
<th>High-Level Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAFETY AND RELIABILITY</td>
<td></td>
</tr>
<tr>
<td>Emergency Response Rate Within 45 Minutes</td>
<td>The metric will measure the elapsed time from when a report of a gas odor call is received and when a Company representative arrives at the scene. The Company is committing to a target of a 95-percent response within 45 minutes, which exceeds the Department’s current requirement.</td>
</tr>
<tr>
<td>Total Damages Per 1,000 Tickets</td>
<td>This metric will measure the ratio of the number of times the Company’s gas distribution facilities are damaged per 1,000 tickets. The Company is committing to a 10-percent improvement over the baseline by Year Five.</td>
</tr>
<tr>
<td>DART Rate</td>
<td>This metric will measure the number of cases resulting in Days Away from Work, Restricted Work Activity, and/or Job Transfer expressed as the number of events per 200,000 hours worked. The Company is committing to a 10-percent improvement over the baseline by Year Five.</td>
</tr>
<tr>
<td>Total Grade 2 Leaks Older than 9 Months</td>
<td>This metric will measure the number of Open Grade 2 Leaks older than nine months recorded at the end of the calendar year. The Company is committing to completing 75 percent of Grade 2 leaks in 9 months or less (which is three months faster than statutory requirement).</td>
</tr>
<tr>
<td>PSMS Implementation</td>
<td>This metric evaluates the annual implementation of the Pipeline Safety Management System (PSMS), as measured by a third-party assessment.</td>
</tr>
</tbody>
</table>
CUSTOMER SATISFACTION & ENGAGEMENT

<table>
<thead>
<tr>
<th>Scorecard Metric</th>
<th>High-Level Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.D. Power Survey (Safety & Reliability Factor)</td>
<td>This metric will measure in the Safety & Reliability factor as measured by J.D. Power. The Company is committing to a 23-point improvement in its Safety & Reliability score by Year Five.</td>
</tr>
<tr>
<td>Web Satisfaction Survey</td>
<td>This metric will measure improvement in customer satisfaction with online tools. The Company is committing to increase this rating to 8.15 out of 10.</td>
</tr>
<tr>
<td>Digital Engagement</td>
<td>This metric will measure digital engagement with customers via self-service and alert notifications. The Company is committing to increase the ratio of digital transactions to total transactions to 85 percent.</td>
</tr>
<tr>
<td>Gas Emergency Calls - Average Speed of Answer</td>
<td>This metric will measure improvement in the average speed of answer of Gas Emergency Calls. The Company is commiting to maintain 10 seconds as the average speed of answer for gas emergency calls.</td>
</tr>
<tr>
<td>New Customer Connect Gas</td>
<td>This metric will measure customer satisfaction with respect to the new gas customer interconnection process based on customer survey data. The Company is committing to maintain a satisfaction rating of 9.23 out of 10.</td>
</tr>
</tbody>
</table>

EMISSION REDUCTIONS

<table>
<thead>
<tr>
<th>Scorecard Metric</th>
<th>High-Level Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Emissions</td>
<td>This metric will measure progress in emission reductions, in metric tons, associated with replacement of aged distribution infrastructure through the GSEP program. The Company is committing to reduce methane emissions by 39 percent from the baseline by Year Five of the PBR plan.</td>
</tr>
<tr>
<td>Grade 3 Environmentally Significant Leaks</td>
<td>This metric will measure the repair of environmentally significant Grade 3 leaks within 12 months of designation. The Company is committing to repair all non-GSEP environmentally significant Grade 3 leaks within 12 months of designation, which exceeds the Department’s regulations.</td>
</tr>
</tbody>
</table>

1. The Company proposes to report on these scorecard metrics results as part of the annual PBR Plan compliance filings made each year from 2021 to 2025, and at the end of the PBR Plan in 2025.
Q. Is the Company proposing any incentives or penalties with respect to the scorecard metrics it is proposing in this case?

A. No, the Company is not proposing any incentives or penalties with respect to the scorecard metrics it is proposing in this case. The Company is already subject to the Department’s rigorous SQ Guidelines, which include penalty metrics. The SQ Guidelines will continue to apply by operation of law during the period of the PBRM.

Q. Which scorecard metrics will you be discussing as part of your testimony?

A. We will be discussing the proposed safety and reliability and emissions reduction scorecard metrics as part of our testimony. Company Witness Conner will be discussing the customer engagement and satisfaction metrics as part of her joint testimony with Mr. Goldman.

A. Safety and Reliability Metrics

Q. What are the proposed scorecard metrics focused on safety and reliability?

A. The Company is proposing five scorecard metrics in the area of safety and reliability, which are: (1) a metric that measures the Company’s emergency response rate; (2) a metric that measures damage to the Company’s distribution system; (3) a DART rate metric; (4) a measure of Grade 2 leaks older than 9 months; and (5) a metric to measure the implementation of the PSMS.
Q. **Please describe the scorecard metric that is designed to measure the Company’s Emergency Response Rate.**

A. The Department requires gas companies to respond to 97 percent of Class I and Class II Odor Calls within 60 minutes. Service Quality Investigation, D.P.U. 16-80 through D.P.U. 16-90, at Attachment A page 14 (January 18, 2017). The Company is proposing a scorecard metric that will set a performance target that exceeds the Department’s current requirements associated with the SQ Guidelines. More specifically, the Company is proposing to respond to 95 percent of Class I and Class II Odor Calls within 45 minutes.

Q. **How does the Company propose to measure the Emergency Response Rate metric?**

A. The gas emergency response time metric measures the elapsed time between the time the utility was first notified of the emergency (i.e., from the time the emergency call was answered) and the time that a Company employee who is qualified to decide upon the appropriate action to take is on site. Consistent with current practice under the Department’s SQ guidelines, only the first call reporting an individual odor-related condition shall be counted for the purpose of calculating performance under this metric.

Q. **How did the Company establish the baseline measure for the Emergency Response Rate metric and what is the Company proposing for a performance target?**

A. The Company’s baseline, average performance in the three-year period, 2016 to 2018 was 96.11 percent of calls responded to within 45 minutes. For the PBR Plan, the Company proposes to set a performance target of 95 percent within 45 minutes as its
minimum target over the five-year PBR term, which is a performance level that exceeds
the Department’s current SQ requirement.

Q. Please describe the scorecard metric that is designed to measure total damages per 1,000 tickets.

A. Excavation damage is a leading cause of natural gas distribution pipeline incidents and the number of excavation damage occurrences per 1,000 “dig location” tickets is an established benchmark within the damage prevention industry and an important indicator of the effectiveness of the Company’s damage-prevention program. Accordingly, the Company is proposing a metric to measure the number of excavation damage occurrences per 1,000 dig safe tickets.

Q. How does the Company propose to measure total damages per 1,000 tickets?

A. The Company tracks the number of dig safe tickets generated to mark-out the Company’s distribution infrastructure and also tracks all reported damage to its system caused by Company personnel, Company contractors, or other third-parties (e.g., a municipal water and sewer department). Using this data, this metric is calculated as the ratio of reported damages to the Company’s gas system per 1,000 dig safe tickets. This metric is unique because not only is the Company holding itself accountable for the actions of its employees but also for the actions of third-parties that work in and around the Company’s natural gas distribution infrastructure.
Q. How did the Company establish the baseline measure for the total damages per 1,000 tickets metric; what is the Company proposing for a performance target; and what steps will it take to achieve this target?

A. The Company’s baseline for this metric is 2.41 damages per 1,000 tickets based on a three-year average (2016 to 2018). The Company proposes a target of 2.17 damages per 1,000 tickets (a ten percent improvement) by the end of the five-year PBR Plan term. The Company plans to achieve this target by taking a holistic approach to educate and inform excavators, homeowners, and municipalities about the dig safe law and working safely around utility distribution infrastructure.

Q. Please describe the scorecard metric that is designed to measure DART rate.

A. DART rate is a lagging indicator that is used to measure workplace injuries that result in days away from work, restricted work activity, and/or job transfer. As discussed above, the Company has invested a significant amount of time and effort to protect the safety of its employees and it is very proud of the progress it has made thus far. The DART rate scorecard metric is important because it provides transparency to the Department, to Company employees, and other interested stakeholders and makes the Company accountable for a high-level of performance in this important safety area. Moreover, both the Company and its employees have invested considerable time in training to ensure that only highly-qualified professionals are performing work on behalf of the Company for the benefit of customers. It is in everyone’s best interest to keep these seasoned professionals on the job where they can deliver value for customers.
Q. How does the Company propose to measure DART rate?

A. The Company’s Safety Incident Management System (“SIMS”) collects data about all workplace incidents and the Company’s payroll system records all hours worked by employees. Using these two sets of data the Company calculates a DART rate, which is expressed as the number of events per 200,000 hours worked.16

Q. How did the Company establish the baseline measure for the DART Rate metric?

A. The baseline DART figure of 2.4 events per 200,000 hours worked is based on the Company’s average performance over the last three years (2016 to 2018).

Q. What target does the Company propose for the DART rate metric and what steps will it take to achieve that target?

A. The Company proposes a performance target of 2.2 events per 200,000 hours work (a ten percent improvement) by year five of the PBR Plan term. As discussed above, the Company has worked diligently to imbue the organization with a “Safety First and Always” culture by committing to safety at the highest levels of the organization, implementing training and communication protocols to ensure that all employees understand the organization’s safety goals and applicable processes and procedures, and considering risk on a systematic basis. The Company plans to achieve its DART target by continuing its organizational commitment to “Safety First” and maintaining a focus on training and communications that is focused on workplace safety.

16 Calculated based on 100 FTEs working 40 hours per week, 50 weeks per year.
Q. Please describe the scorecard metric that is designed to measure the Company’s Grade 2 leak metric.

A. By law, Massachusetts gas companies must repair Grade 2 leaks within 12 months from the date the leak was classified. The Company is proposing a scorecard metric that will set a performance target exceeding the current statutory requirement. Specifically, the Company is proposing to complete 75% of Grade 2 leaks within 9 months or less (which is three months faster than code requirement), with zero exceeding the 12-month statutory requirement.

Q. How does the Company propose to measure the Grade 2 leak metric?

A. The Company plans to track gas leak data through the newly implemented WAM system.

Q. Please describe the scorecard metric that is designed to measure implementation of the PSMS.

A. As explained above, NSTAR Gas is committed to accelerate the deployment of a PSMS to augment its existing processes and procedures, to deal systematically with safe and effective pipeline operation on an enterprise-wide basis, and to minimize the potential for human-performance errors. The Company is currently working to stand-up an API-administered audit program that will yield an objective evaluation and score across the program elements. Specifically, the Company has engaged The Blacksmith Group, to develop an independent third-party evaluation process to develop specific means to

17 G.L. c. 164, § 144(c).
measure the Company’s adoption and maturity level (1-5 scale) per API’s framework. The Company’s anticipated approach is to utilize a third party to validate an internal assessment conducted by the Company to achieve Level 3 (implemented) across all elements over three years, and then sustain or improve those scores over years 4 and 5 of the PBR plan term.

B. Emissions Reduction Scorecard Metrics

Q. What are the scorecard metrics the Company is proposing in the area of emissions reductions?

A. As discussed above, Eversource Energy’s commitment to environmental sustainability is an important part of daily business operations, and a key aspect of Eversource Energy’s vision to become the best energy company in the nation. In this regard, the Company is proposing two emissions reduction scorecard metrics: (1) a metric that measures methane emissions reductions; and (2) a metric that targets the repair of environmentally significant Grade 3 leaks within 12 months of designation.

Q. Please describe the scorecard metric the Company is proposing in the area of methane emissions reduction?

A. As discussed above, the GSEP framework established in 2014 has provided a critical pathway to accelerate the installation of modern, safe, and environmentally sound natural gas distribution systems in the Commonwealth. The Company proposes to track methane emissions reduction as a result of the GSEP program as part of its PBR plan and to commit to a 39 percent reduction from the 2018 emission figure.
Q. How does the Company propose to measure the emissions reduction metric?
A. The Company is proposing to report methane emissions reductions consistent with the current Massachusetts Department of Environmental Protection’s (“MassDEP”) reporting requirements under 310 CMR 7.73. Emissions calculations use the MassDEP emissions factors, which are based on the Washington State Study, to estimate total emissions from the distribution system pipe inventory at year end. Total emissions are reported to the MassDEP on an annual basis. The calculated emissions reduction associated with retired leak prone pipe will be used to determine the total annual reduction as a result of the GSEP program.

Q. How did the Company establish the baseline measure for the emissions reduction metric and what is it proposing as a performance target?
A. The baseline of 28,767 metric tons of methane emissions is based on the 2018 natural gas system emissions measured on the Company’s distribution system pursuant to MassDEP regulations. The Company is proposing to reduce methane emissions by 39 percent (to 17,424 metric tons) by the end of the five-year PBR Plan term.

Q. Please describe the scorecard metric the Company is proposing in the area of Grade 3 leaks.
A. Section 13 of the Energy Diversity Act required the Department to open an investigation to establish specific criteria to identify Grade 3 gas leaks (classified pursuant to Section 144) that have significant environmental impact, and to establish a plan to repair leaks that are determined to have a significant environmental impact. St. 2016, c. 188, § 13. On March 8, 2019, the Department issued an order which, among
other things, established repair timeframes for environmentally significant Grade 3 leaks. Specifically, the Department adopted the following timeframes for eliminating leak-extent designated Grade 3 leaks:

- Leaks with a leak footprint greater than 10,000 square feet shall be repaired within twelve months of designation; if the leak is on a facility scheduled for replacement within three years under the GSEP, then the leak shall be repaired or eliminated within two years of designation, provided that in either instance such repair or elimination does not compromise public safety;

- Leaks with a leak footprint between 2,000 and 10,000 square feet shall be repaired within two years of designation; if the leak is on a facility scheduled for replacement within five years under the GSEP, then the leak shall be repaired or eliminated within three years, provided that in either instance such repair or elimination does not compromise public safety.

D.P.U. 16-31-C, at 24-25 (March 8, 2019).

In an effort to further reduce the environmental impact of Grade 3 leaks, the Company propose to extend an accelerated repair timeframe to non-GSEP environmentally significant Grade 3 leaks.

Q. What target does the Company propose for the Grade 3 leak metric?

A. The Company is targeting the repair of all non-GSEP environmentally significant Grade 3 leaks within twelve months of designation.\(^{18}\)

\(^{18}\) The 12-month timeframe would be subject to exceptions for environmentally significant Grade 3 leaks that are inaccessible, challenging to repair, or in a street under a paving moratorium, similar to 220 CMR 114.07(2)(a).
VIII. CONCLUSION

Q. Do you have any summary comments regarding the Company’s proposals in this proceeding?

A. The Company appreciates this opportunity to provide the Department with a comprehensive rate-case filing designed to meet the needs of customers and necessary revenue support for the Company, and to further the Department’s energy and environmental policy goals. The Company has devoted significant time and effort to developing and proposing this rate filing and proposed PBR Plan. The PBR Plan is designed to address the changes in the Company’s operating environment that are discussed herein. In particular, the Company’s PBRM will advance the Department’s goals of safe, reliable, and least-cost energy service; further incentivize the Company to control costs; promote the Commonwealth’s energy policies and statutory obligations; and reduce administrative burden in regulation.

Q. Does this conclude your testimony?

A. Yes. On behalf of NSTAR Gas, we appreciate the Department’s consideration of the Company’s proposals in this case.
Gas Business Organization – Post-Test Year FTEs

William Akley
President, Gas Operations

Kevin Kelly
Vice President, Gas Operations

Gregory Hill
Vice President, Gas Engineering

Darrin Wertz (+1 FTE*),
Director, Pipeline Safety & QA

Maintenance
+12 FTEs

Dispatch & Meter Services
+ 6 FTEs

Construction
+1 FTEs

Technical Services
+ 2 FTEs

Project Mgmt
+6 FTEs

Planning & Scheduling
+5 FTEs

Gas Engineering
+19 FTEs

Gas System Operation
+2 FTEs

Instrumentation & Regulation
+5 FTEs

Emergency Preparedness
+ 1 FTE

New Engineer Cohort Program
+6 FTEs

Pipeline Safety Management
+5 FTEs

QA/QC
+3 FTEs

Project Director, Clean Gas Technologies
+1 FTE

+75 FTEs

*Included in post-test year incremental FTEs
Gas Operations (32 Total FTEs)

William Akley
President, Gas Operations

Kevin Kelly
Vice President, Gas Operations

Incremental FTE Detail

- Maintenance
 - +12 FTEs

- Dispatch & Meter Services
 - +6 FTEs

- Construction
 - +1 FTEs

- Technical Services
 - +2 FTEs

- Project Mgmt
 - +6 FTEs

- Planning & Scheduling
 - +5 FTEs

- INCREMENTAL FTE DETAIL
 - Supervisor (1 FTE)
 - 12004 Welder (1 FTE)
 - 12004 Technicians (10 FTEs)

 - Dispatch Manager (1 FTE)
 - Meter Service Supervisor (1 FTE)
 - 12004 Service Technicians (3 FTEs)
 - Dispatch Clerk (1 FTE)

 - Construction Supervisor (1 FTE)

 - Corrosion Technician (1 FTE)
 - Damage Prevention Supervisor (1 FTE)

 - Manager, Project Controls (1 FTE)
 - Supervisors (2 FTEs)
 - Specialist Contractor Billing (1 FTE)
 - Estimators (2 FTEs)

 - Manager, Ops Performance and Long-Term Planning (1 FTE)
 - Operations Analyst (1 FTE)
 - WAM Administrator (1 FTE)
 - Resource Management & Workforce Analyst (1 FTE)
 - Clerk (1 FTE)
Gas Engineering (34 Total FTEs)

Incremental FTE Detail

- Manager System Planning (1 FTE)
- Engineer - System Analysis (2 FTEs)
- Field Engineers (7 FTEs)
- Engineer – Policy and Compliance (1 FTE)
- Management of Change Coordinator (1 FTE)
- Asset Mgmt Enhancement (2 FTEs)
- Complex Projects PM Enhancement (3 FTEs)
- GIS Techs (2 FTEs)

- Senior Supervisor Gas Control (1 FTE)
- SCADA Engineer (1 FTE)

- Director (1 FTE)
- Instrumentation Technicians (4 FTEs)

- ERP Specialist (1 FTE)

- New Engineer Cohort Program (6 FTEs)

- Project Director (1 FTE)
Pipeline Safety & QA (9 Total FTEs)

William Akley
President, Gas Operations

Darrin Wertz (+1 FTE)*,
Director, Pipeline Safety & QA

Pipeline Safety Management
+5 FTEs

QA/QC
+3 FTEs

INCREMENTAL FTE DETAIL

• Director (1 FTE)

• Managers (3 FTEs)
 • PSMS Program Administrators (2 FTEs)

• QA/QC Analyst (1 FTE)
 • Process Safety Coordinator (1 FTE)
 • Process Analyst (1 FTE)

*Included in post-test year incremental FTEs
Gas Operations

<table>
<thead>
<tr>
<th>Service Co</th>
<th>NSTAR Gas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Supervisor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- 12004 Welder</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- 12004 Technicians</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Dispatch & Meter Services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Dispatch Manager</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Meter Service Supervisor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- 12004 Service Technicians</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>- Dispatch Clerk</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Construction Gas Business Unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Construction Supervisor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Technical Services (Leak Svy Corrosion + Damage Prevention)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Corrosion Technician</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Damage Prevention Supervisor</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Manager Project Controls</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Supervisors</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- Specialist Contractor Billing</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Estimators</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Planning & Scheduling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Manager of Ops Performance & Long term Planning</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Operations Analyst</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- WAM Administrator</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Resource Mgmt & Workforce Analyst</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Clerk</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Gas Operations</td>
<td>6</td>
<td>26</td>
</tr>
</tbody>
</table>

Gas Engineering

<table>
<thead>
<tr>
<th>Service Co</th>
<th>NSTAR Gas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas System Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Manager System Planning</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Field Engineers</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>- Engineer - System Analysis</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- Engineer - Policy and Compliance</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Asset Management Enhancement</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- Complex Projects PM Enhancement</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>- GIS Techs (NSTAR)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- Management of Change ("MOC") Coordinator</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gas System Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Senior Supervisor Gas Control</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- SCADA Engineer</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Instrumentation and Regulation ("I&R")</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Director</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Manager (Changed from Service to NSTAR)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Instrument Techs (NSTAR)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Gas ERP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- ERP Specialist</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>New Engineer Cohort Program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Project Director, Clean Gas Technologies</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Engineering</td>
<td>27</td>
<td>7</td>
</tr>
</tbody>
</table>

Pipeline Safety Management & Quality Assurance

<table>
<thead>
<tr>
<th>Service Co</th>
<th>NSTAR Gas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Director</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Manager</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>- PSMS Program Administrator</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>- QAQC Analyst</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Process Safety Coordinator - MA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>- Process Analyst</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total Pipeline Safety Management & QA</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>

Total Gas Business

<table>
<thead>
<tr>
<th>Service Co</th>
<th>NSTAR Gas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>33</td>
<td>75</td>
</tr>
</tbody>
</table>
COMMONWEALTH OF MASSACHUSETTS
DEPARTMENT OF PUBLIC UTILITIES

Petition of NSTAR Gas Company d/b/a Eversource Energy for Approval of an Increase in Base Distribution Rates and Performance-Based Regulatory Plan for Gas Service Pursuant to General Laws Chapter 164, §94 and 220 C.M.R. §§ 5.00 et seq.

DIRECT TESTIMONY OF
PENELOPE MCLEAN CONNER AND MICHAEL R. GOLDMAN

Customer Service and Sustainability Vision
Clean Energy Demonstration Projects

On behalf of
NSTAR Gas Company
d/b/a Eversource Energy

November 8, 2019
COMMONWEALTH OF MASSACHUSETTS
DEPARTMENT OF PUBLIC UTILITIES

DIRECT TESTIMONY OF
PENELOPE MCLEAN CONNER AND MICHAEL R. GOLDMAN

Table of Contents

I. INTRODUCTION ... 1
II. CHANGING EXPECTATIONS OF THE CUSTOMER BASE... 7
III. MEETING THE EXPECTATIONS OF TODAY’S CUSTOMER................................... 11
 A. Initiatives to Improve the Customer Experience and Meet Customer Expectations 11
 B. Public Safety Education Campaign .. 19
IV. EVERSOURCE ENERGY SUSTAINABILITY VISION.. 21
 A. Overview of Proposed Demonstration Projects ... 25
 B. Gas Demand Response Demonstration Project ... 28
 C. Geothermal Network Demonstration Project... 43
V. SCORECARD METRICS ... 60
VI. CONCLUSION .. 71
I. INTRODUCTION

Q. Ms. Conner, please state your name, position and business address.

A. My name is Penelope McLean Conner. My business address is 247 Station Drive, Westwood, Massachusetts 02090. I am Chief Customer Officer and Senior Vice President of the Customer Group for Eversource Energy. I am employed by the Eversource Energy Service Company (“Eversource Service Company” or “ESC”).

Q. What are your principal responsibilities in this position?

A. As Chief Customer Officer and Senior Vice President for ESC, I am responsible for overseeing all aspects of customer service, including planning and directing all activities related to the processes of customer inquiries, billing, credit and collections and field operations. I am also responsible for delivering a cost-effective portfolio of energy-efficiency programs to customers of the Eversource Energy operating companies, including NSTAR Gas Company d/b/a Eversource Energy (“NSTAR Gas” or “Eversource” the “Company”). I lead a team of 1,400 employees and manage a $120 million annual budget in this role.
Q. Please describe your educational background and professional experience.

A. I earned a Bachelor of Science degree in industrial engineering from North Carolina State University and I am a registered Professional Engineer. From 1986 through 1998, I worked for Duke Power Company in Charlotte, North Carolina. I served in a variety of roles starting in engineering and progressing to management of dispatch and customer-service functions and assistant to the president of Duke Power, culminating in a position as General Manager for Process Integration. From 1998 through 2002, I worked for Tampa Electric Company in Tampa, Florida, as a Director of Customer Service. I directed the customer service team of 350 employees with a $21 million annual budget.

In the four years that I was with Tampa Electric Company, I improved customer satisfaction while reducing overall customer service costs. For the years 1998 through 2001, I increased Tampa Electric Company’s J.D. Power billing and payment rankings from 11th to 5th in the nation, and customer service rank from 20th to 1st nationally, while reducing bad-debt write-offs by 20 percent. In 2002, I was hired by NSTAR Electric and NSTAR Gas (together “NSTAR”) as Vice President of Customer Care, where I assured quality customer service for NSTAR’s 1.3 million electric and gas customers. I was named Senior Vice President and Chief Customer Officer in 2012 following the NSTAR/Northeast Utilities merger.

For over a decade, I have served as a columnist for Electric Power and Light Magazine. I am the author of three books, *Customer Service: Utility Style*; *Energy Efficiency*;
Principles and Practices; and Profiles in Excellence: Utility Chief Customer Officers.

I am a member of the Edison Electric Institute Retail Services Committee; Chair of the Customer Service Week Board of Directors; and Chair of the American Council for an Energy Efficient Economy. I also serve on the City of Boston’s Green Ribbon Commission, among other charitable and public-service organizations. I am also the chair of the Board of the United Way of Massachusetts Bay and Merrimack Valley.

Q. Have you previously testified in formal hearings before the Massachusetts Department of Public Utilities?

Q. Mr. Goldman, please state your name, position and business address.

A. My name is Michael R. Goldman. My business address is 247 Station Drive, Westwood, Massachusetts. I am the Director, Regulatory, Evaluation & Support, Energy Efficiency for the operating companies of Eversource Energy.

Q. What are your principal responsibilities in this position?

A. My principal responsibilities in this position are to oversee the development and evaluation of cost-effective customer-facing program offerings. My team is responsible for overseeing evaluation activities related to the delivery of the Company’s energy efficiency programs and determining the savings values associated with the individual measures and overall programs. Additionally, my team is responsible for developing the energy efficiency plans and subsequent annual and term reports for those programs in each of the Eversource operating jurisdictions. My team maintains and runs the benefit-cost ratio model, which helps determine the cost effectiveness of individual measures and overall programs. Lastly, I am responsible for developing innovative offerings for Eversource Energy customers that take advantage of new technologies or strategies.

Q. Please summarize your professional and educational background.

A. I earned a Bachelor of Arts degree from the University of Wisconsin-Madison and a Master of Arts degree from the Johns Hopkins University with specializations in international finance and energy policy. From 2008-2010, I was an Energy Business Analyst at the consulting firm of PowerAdvocate focusing on large capital-intensive
utility construction projects. From 2010-2012, I was a strategy and operations consultant within Deloitte Consulting’s Energy and Resources practice area, focusing on energy issues for federal clients. I joined NSTAR in 2012, where I have served in roles of increasing responsibility, including Senior Analyst, Supervisor, Manager, and now Director. Within my roles at Eversource Energy, I have been responsible for energy efficiency planning and evaluation matters across Eversource Energy’s three-state footprint. I have also been responsible for designing and setting the strategic direction for innovative programs that impact multiple parts of the Company, such as demand response initiatives. I have produced over 30 publications and have been featured as a panelist at conferences in the areas of energy efficiency, demand response, distributed energy resources and innovative energy technologies.

Q. Have you previously testified before the Department or other regulatory agencies?

Q. What is the purpose of your testimony?

A. This joint testimony is designed to serve three important purposes regarding the Company’s customer service and sustainability vision. Specifically, this testimony discusses the changes that the Company is experiencing in customer perceptions regarding utility providers, as well as evolving customer expectations about the way that utility service is provided and the growing demand for cleaner energy solutions.

Second, as part of the performance-based regulatory (“PBR”) plan proposed by the Company in this proceeding, the Company is proposing 12 performance metrics within three categories that will allow the Department and other stakeholders to gauge the Company’s progress on key performance indicators over the five-year term of the PBR Plan. These three performance categories are: Safety and Reliability; Customer Satisfaction and Engagement; and Emission Reductions. Our testimony discusses the metrics comprising the Customer Satisfaction and Engagement category, which are designed to drive benefits for customers in close alignment with the Department’s regulatory objectives. Metrics comprising the other two categories of performance are discussed in the testimony of Company Witnesses Akley and Horton.

Our testimony also discusses the Company’s proposal for two, clean energy demonstration projects. These projects are designed to produce gains in knowledge and experience and help inform future development of the industry in relation to gas demand-response programs and geothermal distribution networks.
Q. Are you presenting any exhibits in addition to your testimony?

A. Yes. We are presenting the following exhibits as part of our testimony in this case:

<table>
<thead>
<tr>
<th>Exhibit</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exhibit ES-PMC/MRG-2</td>
<td>Illustrative Gantt chart showing anticipated timing of each aspect of geothermal project</td>
</tr>
<tr>
<td>Exhibit ES-PMC/MRG-3</td>
<td>Detailed cost estimates for the geothermal network project, broken down by scenario and cost component</td>
</tr>
</tbody>
</table>

Q. How is your testimony organized?

A. This joint testimony is organized as follows: Section I is an introductory section. In Section II, Ms. Conner presents the Company’s customer philosophy and discusses changes in customer perceptions and evolving expectations about utility service. In Section III, Ms. Conner discusses Eversource Energy’s sustainability vision. In Section IV, Ms. Conner and Mr. Goldman jointly present the Company’s two proposed demonstration projects. Ms. Conner discusses the Company’s proposed scorecard metrics for Customer Satisfaction and Engagement in Section V. Section VI is the conclusion.

II. CHANGING EXPECTATIONS OF THE CUSTOMER BASE

Q. Ms. Conner, what is Eversource Energy’s overall philosophy for customer service?

A. Eversource Energy is the largest energy provider in New England and it is committed to safety, reliability, environmental leadership and expanding energy options for approximately 4 million electric, natural gas and water customers. Eversource Energy
has set an aggressive goal—to be the best energy company in the nation. This goal is built upon several pillars—two of which are: (1) achieving operational excellence; and (2) delivering a superior customer experience. Eversource Energy’s commitment to operational excellence is discussed in the joint testimony of William J. Akley, President of the Eversource Energy gas distribution business, and Douglas P. Horton, Vice President, Distribution Rates and Regulatory Requirements. With respect to delivering a superior customer experience, Eversource Energy is pursuing a multiplicity of solutions to enhance the ways in which customers interact with Eversource Energy and that make doing business with the company quick and easy.

Q. How does Eversource Energy gather information and data about customer preferences and expectations?

A. At Eversource Energy, the voice of the customer is extremely important and the Company works proactively to gather data about customer expectations and preferences and then adapts its business to those expectations and preferences. Eversource Energy gathers customer information and research data using multiple tools and from multiple sources. For example, enhanced analytics on Eversource.com provide insight into how customers use Eversource Energy’s website and help identify any pain-points within their online journey. Transactional surveys are used to solicit feedback on specific interactions as well as a user’s entire online experience. Eversource Energy has also introduced an online community made up of about 4,000 residential and commercial customers, which allows Eversource Energy to test messaging, website design, and other new customer service offerings.
Eversource Energy reviews national customer trends through information provided by national trade associations, such as the American Gas Association and the Edison Electric Institute. Eversource Energy also subscribes to external customer research through J.D. Power and Escalent (formerly Market Strategies International), which provide insights on customer perceptions regarding Eversource Energy and on performance of other utility providers across the country. Eversource Energy also conducts its own customer perception surveys, which provide insight into customers’ overall perception of Eversource Energy.

Eversource Energy has also implemented a voice of the customer dashboard that provides management with near real-time insights on customer feedback and perceptions. The dashboard is updated as customer feedback is received and augmented with internal metrics that can help in understanding the actual results. For example, in customer service, data is provided on call handling performance, which has a direct impact on the customer’s experience.

Lastly, Eversource Energy has created a platform for customers to rate their experience with customer service representatives (“CSRs”)—much like the rating system for Uber drivers where customer feedback is an integral part of the experience. As soon as the interaction between the customer and the CSR ends, a survey email is sent to the customer, and the response rate has been about 80 percent. CSRs can see their rating, and if it was not positive, the call may be reviewed and CSRs can work with supervisors to identify areas for improvement going forward.
Q. What is the data indicating to the Company about its customers?

A. The customer survey data gathered by Eversource Energy shows that customers increasingly expect to be served in a digital fashion, using the channel of their choice, and they expect a variety of choices. The data also shows that, in addition to safe, reliable and low-cost energy service, customers are increasingly interested in clean energy solutions. Recently, Eversource Energy surveyed customers in its online community and more than 50 percent responded that Eversource Energy plays a leadership role in providing clean energy and 88 percent felt clean energy was strongly linked to Eversource Energy’s efforts to care for the environment. Simply put, clean energy and sustainability are important to Eversource Energy’s customers.

Q. Ms. Conner, are changes in customer demographics, and changes in the culture more generally, reshaping customer expectations?

A. Yes, according to data from the U.S. Census Bureau, Millennials are beginning to surpass Baby Boomers as the nation’s largest living adult generation. Correspondingly, Eversource Energy’s customer base increasingly will be comprised of Millennials who are beginning to overtake Boomers as the largest group of utility customers.

This is an important fact because Millennials and younger generations expect fast and accessible customer service; they expect multiple channels for service; and they expect

to be served by digital channels. Also, unlike previous generations, Millennials tend
to be more engaged with respect to sharing their customer service experiences, good
and bad, and rating the products and services they use as consumers. Accordingly,
Eversource Energy is investing in technology and building-out digital channels to serve
the growing demographic of Millennials and younger generations. However, I must
emphasize that Eversource Energy never loses sight of the fact that its customer base
is diverse and Eversource Energy is committed to providing high-quality customer
service for all of its customers, who span multiple generations. For that reason,
Eversource Energy’s customer service channels are as diverse as its customer base. For
example, many customers still prefer to use the telephone to interact with the Company
and that option remains available to all customers.

III. MEETING THE EXPECTATIONS OF TODAY’S CUSTOMER

A. Initiatives to Improve the Customer Experience and Meet Customer Expectations

Q. Ms. Conner, please discuss some of the specific steps Eversource Energy is
pursuing to achieve its customer-service vision and meet the expectation of today’s
customers.

A. A primary interface between Eversource Energy and its customers is billing and
payment—it is a key touch point that occurs on a monthly basis. In fact, over 90 percent
of the visits to Eversource Energy’s website are to view and pay utility bills.
Accordingly, Eversource Energy has made several key investments to make the billing
and payment experience better for customers. For example, in 2016, Eversource
Energy implemented a new full-color bill (designed with direct customer feedback),
which makes information easy to find and provides a clear view of energy use and
charges to help customers better understand and manage their energy costs.

Eversource Energy has also partnered with KUBRA, an industry leader in customer
experience management solutions, to develop and launch a new Payment Plan Portal
on Eversource.com. The Payment Plan Portal provides customers with an enhanced
digital billing and payment experience and allows customers to initiate a service
reconnection order (as applicable); view and pay bills in as few as two clicks; establish
bill and payment alerts in the channel of their choice; and find support in the online
experience with a virtual assistant, among other items.

Eversource Energy also implemented a consolidated credit card processing solution
with additional options and, for residential customers, reduced fees. Lastly, Eversource
Energy moved its payment processing operation to Massachusetts, which has reduced
time and costs for the benefit of customers.

Looking ahead, Eversource Energy will continue to focus on improving billing and
payment options for customers. Specifically, Eversource Energy is proposing a fee-
free credit and debit card program in D.P.U. 19-71, which Eversource Energy views as
a meaningful and necessary step forward to accommodate changing customer needs,
expectations, and preferences regarding their payment options for utility service.
Eversource Energy has already implemented a fee-free program in Connecticut and
experienced positive and immediate impacts on customer satisfaction.
Eversource Energy has also focused on improving the other channels through which customers interface with the Company. For example, Eversource Energy has created focused training for its CSRs; enhanced the tools that CSRs have at their fingertips when they are interacting with customers; and implemented a CSR facing informational tool called Knowledgebase. The Knowledgebase tool is searchable by entering a question or key word and services all Eversource Energy Customer Contact Centers. Eversource Energy’s first call resolution metric is in the top quartile in the industry as a result of these efforts. Eversource Energy has also recognized that a growing population of its customer base prefers and is moving toward digital channels. This preference is driven, in part, by consumers’ transactional experiences with service providers in other industries such as Amazon, Uber, American Express, and Netflix. In other words, customer service expectations are being set outside of the gas and electric utility industries.

Today’s digital consumers want the same type of experience in every transaction with service providers, and they want that experience to be intuitive, personalized, and fast. Consequently, customer satisfaction in the utility space is more and more closely linked to the availability of digital tools and electronic engagement channels. For that reason, Eversource Energy continues to enhance its website to make it more user friendly. For example, enhancements to Eversource Energy’s online “Start Service” process enable customers to easily set up their gas and electric service in a single, online transaction. New features include the ability to schedule move-in service requests and a
confirmation email with additional, helpful information following each transaction. Eversource Energy will continue to improve this process by providing immediate access to account numbers to facilitate paperless billing and customer preference enrollment at move-in.

Eversource Energy also recently launched its first mobile app for Apple and Android phones. The new mobile app makes Eversource Energy account management easier and more convenient and consists of features that include the ability to view and pay a bill, manage paperless billing, report or check an electric outage, as well as fast access to Eversource Energy’s outage map and customer service contact information. Among the many yardsticks for best-in-class digital customer experience, mobility ranks high. I am pleased to report that this has been a hugely popular new offering and it has already been downloaded more than 108,628 times, and over 3,000,000 customer interactions have occurred, including 260,000 payments. The app has been well received with high ratings by customers in the app stores. Overall, the launch of the mobile app has exceeded initial expectations.

Eversource Energy has also taken proactive steps to ensure that its services can be easily accessed by non-English speakers. For example, Eversource Energy is staffing its customer contact center with Spanish and Portuguese-speaking CSRs. Eversource Energy also has a language-line service that provides interpretive services. Additionally, Eversource Energy is working on an initiative to provide content on its
website in Spanish, which is the most predominantly spoken language in Massachusetts other than English.

Q. Ms. Conner, are there additional initiatives with respect to delivering a superior customer experience that you would like to discuss?

A. Yes. Eversource Energy is implementing a set of critical projects that will improve operational efficiency and customer satisfaction. These projects are the Enterprise Work and Asset Management (“WAM”) system, the ClickSoftware Mobile Workforce Management (“Mobile Gas WAM”) solution, and the Mobile Gas Meter Service (“MGMS”) project. The projects are also discussed in the joint testimony of William Akley and Douglas Horton, in the joint testimony of Douglas Horton and Ashley Botelho, and in the joint testimony of Leanne Landry and Thomas Desrosiers.

The legacy work and asset management systems in use across the Eversource Energy operating companies were outdated, prone to failure, and not equipped to meet the going forward business needs of Eversource Energy and its customers. Moreover, the legacy processes for field-service work was largely manual and paper-based, so that the processes were labor intensive and inefficient. Also, the Eversource Energy customer contact center had little visibility into the work going on in the field. This “mobility gap” impeded the operating companies’ ability to meet the expectations of customers who expect to know where and when a field technician will arrive for an appointment, and who have grown accustomed to being served by field mobility solutions as a part of their day-to-day interactions with other service providers. To
address these challenges, Eversource Energy is implementing a single Enterprise Mobile Technology Platform across gas and electric operations with the deployment of the WAM, integrated with the industry-leading Mobile Gas WAM solution, that will modernize operating systems and business processes.

The Mobile Gas WAM system provides new capabilities to field workers, which includes access to the geographic information system ("GIS"), maps, standards, procedures and email/texting to provide field personnel with more timely, accurate information to perform construction, maintenance, inspection, compliance and emergency gas work activities required to deliver reliable energy and a better customer experience. These mobility enhancements are supported by the field mobility devices that are carried by the Company’s workers in the field. These devices enable two-way communications between the Company and its field personnel—allowing workers to provide updates regarding the status of the work, which in turn creates the ability to provide timely status updates to customers on their service requests. In addition, the functionality provided by the WAM and Mobile Gas WAM projects allow the operating companies to remind customers of their appointments and provide customers alerts when technicians are in transit to the customer’s premises.

The Gas WAM project was placed in service for NSTAR Gas and Yankee Gas in March 2019. The Mobile Gas WAM project was placed in service for NSTAR Gas and Yankee Gas in August 2019.
Q. Please describe the MGMS project.

A. The MGMS project is designed to replace two disparate legacy systems, pCad and Advantex, to provide new and improved appointment booking functionality for the Company’s CSRs and customers who are utilizing the self-service appointment booking feature. This project will support the Gas Meter Services business, with the following as its key objectives:

- Establish a single unified business process for gas meter services and customer request process for gas meter services work;
- Improve workload and resource utilization by leveraging automatic scheduling, route optimization, and “Best Fit” appointment booking;
- Improve customer experience by improving the appointment process and working towards reducing the customer appointment window; and
- Providing job status to CSRs and customers.

The MGMS project is in the testing phase and, assuming testing is successful, the Company anticipates that this project will be placed in service by the first quarter of 2020.

Q. Have expectations changed with respect to the information customers expect from Eversource Energy regarding the safety of gas service, particularly in the wake of the Merrimack Valley incident?

A. Yes, customers want reassurance about the safety and reliability of gas service. As discussed in the joint testimony of William Akley and Douglas Horton, Eversource Energy’s number one priority is to provide safe and reliable gas service to customers and the Company has made significant capital investments and devoted considerable
resources to ensure its operations are designed to deliver safe and reliable gas service.

In the wake of the Merrimack Valley incident, the issue of gas safety has entered the public conscience and members of the public have requested information about safety issues and possible gas leaks in their area. In response, Eversource Energy has enhanced its communications channels, including its website and bill inserts, to provide customers with information about gas safety, instructions about how to report an odor of gas, and what to do if an incident should arise.

The Company is making significant progress on the accelerated replacement of aging infrastructure through its Department-approved Gas System Enhancement Program (“GSEP”), expeditiously addressing leaks in compliance with Massachusetts law and Department regulations. In addition, Eversource has worked collaboratively with the Home Energy Efficiency Team (“HEET”), Gas Safety Inc., Mothers Out Front and the other Massachusetts LDCs to field test multiple methods to measure emissions from gas leaks. To convey additional information about the safety of the gas distribution system to customers, the Company is developing a comprehensive Public Safety Education Campaign as part of the PBR Plan proposed in this proceeding.

2 In 2014, the Massachusetts State Legislature passed An Act Relative to Natural Gas Leaks (“Gas Act”). The Gas Act permitted local distribution companies (“LDCs”) to submit to the Department annual plans to repair or replace aged natural gas infrastructure. On October 31 of each year since the passage of the Gas Act, NSTAR Gas has submitted its GSEP to the Department setting forth its proposals for replacing aged pipe during the upcoming construction year.
B. Public Safety Education Campaign

Q. Please provide an overview of the Company’s efforts to convey additional information about safety to customers.

A. In the wake of the Merrimack Valley incident, and in line with Eversource’s continued efforts to improve the overall safety and reliability of its gas pipeline system, Eversource Energy decided it was vital to increase the level of awareness among customers about how to detect and respond to a gas leak. In 2018, the Company updated the content on Eversource.com with a focus on gas safety, including how to detect a leak, and the importance of “calling before you dig.” These specific topic areas were validated by J.D. Power research. In 2019, Eversource Energy began working with Boathouse Group, Inc, ("Boathouse"), a full-service marketing agency, to develop the overall creative and media strategy for the customer information and education campaign. It was important to the Company to reach both individual homeowners and commercial businesses, as well as customers who are in rental units heated with gas.

Q. Please provide more detail regarding the messaging and channels through which the Company is communicating gas safety information to customers.

A. The customer information and education campaign began running in both Massachusetts and Connecticut in the fall of 2019, and the creative approach is simple and direct. “Smell, leave, tell” and “Call 811 before you dig” are the prominent messages, with customers encouraged to click “learn more” on digital links to Eversource.com. The campaign utilizes digital channels, which allows the Company to target customers efficiently by zip code, along with billboards and bus shelter
messaging to convey information in heavy traffic locations. The Company is also including the safety messaging in its November 2019 Customer Update bill insert.

The campaign has already generated substantial engagement across Connecticut and Eastern Massachusetts, and the highlights include:

- Delivered an estimated 7,000,000 offline impressions on billboards and bus shelters.
- Reached 87,121 people on Facebook during the first 7 days, delivering 145,920 impressions and 31,874 video views.
- Streamed over 530,000 audio spots on Pandora.
- Served 81,969 display ad impressions and drove 223 clicks.
- Appeared in 3,564 results for Paid Search, driving 131 clicks to the website from Bing and Google.

Q. **How does the Company plan to build upon and further refine its customer education and information campaign?**

A. A substantial benefit of employing digital channels is the ability to analyze customer viewing data to determine how many clicks or views the messages generated. Also, the Company plans to test the impact of its messaging and recall with customers. This feedback, coupled with the valuable analytics that digital provides, positions the Company to adjust the creative and/or media strategy in future efforts planned for 2020. In 2020, Eversource Energy will continue its partnership with Boathouse and the Company expects to make investments to refine the customer education campaign.
IV. EVERSOURCE ENERGY SUSTAINABILITY VISION

Q. Is the concept of sustainability integrated into the Company’s proposals in this proceeding?

A. Yes. Eversource Energy is working hard to be recognized as one of the greenest energy companies in the nation. Eversource Energy’s commitment to environmental sustainability is an important part of its daily business operations and key to its vision to become the best energy company in the nation. Eversource Energy is embedding sustainability in its operating culture through numerous environmental, social and governance initiatives that guide the Company’s management and operation.

Q. Within the Eversource Energy sustainability vision, how do natural gas customers help to reduce greenhouse gas emissions?

A. In Massachusetts, over 30 percent of homes heat with high CO$_2$ emitting fuels—propane, oil, and a very small percentage on coal.3 Across Massachusetts that’s nearly 800,000 homes. Consumers who choose natural gas over oil, or switch from oil to natural gas to heat their homes can reduce their carbon emissions by as much as 27 percent simply by changing fuel sources to natural gas.4

The impact of this fuel switch is magnified where the new systems are installed for the gas customer are highly efficient. The Massachusetts Energy Efficiency programs are foundational to optimizing energy usage in the Commonwealth. The latest three-year

energy efficiency plans covering 2019-2021 are expected to reduce natural gas usage by 1.25 percent of annual sales statewide (1.34 percent of annual sales for NSTAR Gas)—the highest natural gas savings goal ever set in Massachusetts. Customers who convert from a baseline efficiency oil heating system to a high-efficiency natural gas system, can reduce their greenhouse gas emissions by a total of 40 percent.\(^5\)

In addition, the efficiency of home heating and water heating equipment has improved considerably over the past several decades. Regarding heating equipment, when efficiency is higher, less natural gas needs to be used by the furnace or boiler to get the same amount of heat output. New gas heating systems can have efficiencies as high as 97 percent while the most efficient oil heating system available only reaches 89 percent.

In Massachusetts, the Mass Save® program offers rebates on high efficiency heating equipment as well as zero-percent financing for major energy efficiency measures. These equipment efficiency improvements, combined with initiatives like Mass Save®, contribute to a reduction in the use of natural gas.

Additionally, Massachusetts Building and Energy Codes,\(^6\) and state programs (e.g., Pathways to Zero Net Energy Program), in combination with the Commonwealth’s

\(^6\) In 2009, Massachusetts became the first state to adopt an above-code appendix to the "base" building energy code-the "Stretch Code." (780 CMR Appendix 115.AA). The Stretch Code emphasizes energy
nation-leading energy efficiency programs, have produced buildings with better insulation, smarter thermostats, and more advanced and tighter-fitting windows and doors—all of which contribute to tighter building envelopes. A tighter building envelope stays warmer in the winter and cooler in the summer and therefore requires less fuel for heating and cooling.

Collectively, the efforts described above have reduced the usage of natural gas in customer homes and businesses. According to the American Gas Association, the average American home consumes 40 percent less natural gas than it did 40 years ago. Since 1970, the decrease in natural gas use has averaged one percentage point per year. Consequently, by continuing to serve natural gas customers, the Company is helping to reduce greenhouse gas emissions and achieve the Commonwealth’s environmental goals, which is a central focus of Eversource Energy’s commitment to environmental sustainability.

Q. Does the Company have evidence of the trend of reduced gas usage among customers within its customer base?

A. Yes. As shown in the table below, an analysis of the billing data for single family residential gas customers found that the Energy Use Intensity (“EUI”) of homes performance, as opposed to prescriptive requirements, and is designed to result in cost-effective construction that is more energy efficient than that built to the "base" energy code. Building Energy Code, Summary of State Building Energy Codes including the Stretch Code, https://www.mass.gov/info-details/building-energy-code.

On October 1, 2019, ACEEE released its State Energy Efficiency Scorecard and Massachusetts continues to hold the first-place spot, a position it has held for nine years.

decreased steadily from 2013-2017, with customers using roughly 19 percent less energy per square foot in 2017 than they did in 2013. More recent gas customers were particularly efficient, with those coming online in 2016-2017 achieving 20 percent more efficient usage than existing customers (data for customers added in 2015 and 2018 reflect partial-year usage).

SINGLE FAMILY HOMES

<table>
<thead>
<tr>
<th>Year</th>
<th>Gas Use Intensity (therms/Sq. Ft)</th>
<th># Billing Accts</th>
<th>Avg Sq. Ft</th>
<th>Avg Annualized Weather Normalized Usage (therms)¹,²</th>
<th>Gas Use Intensity (therms/Sq. Ft)</th>
<th># Billing Accts</th>
<th>Avg Sq. Ft</th>
<th>Avg Annualized Weather Normalized Usage (therms)¹,²</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>0.633</td>
<td>78,741</td>
<td>1,885</td>
<td>1,193</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>0.607</td>
<td>86,219</td>
<td>1,887</td>
<td>1,146</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>0.595</td>
<td>94,052</td>
<td>1,887</td>
<td>1,122</td>
<td>0.350</td>
<td>951</td>
<td>1,978</td>
<td>693</td>
</tr>
<tr>
<td>2016</td>
<td>0.526</td>
<td>102,998</td>
<td>1,882</td>
<td>990</td>
<td>0.408</td>
<td>1,746</td>
<td>1,955</td>
<td>797</td>
</tr>
<tr>
<td>2017</td>
<td>0.514</td>
<td>113,825</td>
<td>1,879</td>
<td>966</td>
<td>0.401</td>
<td>2,735</td>
<td>1,914</td>
<td>767</td>
</tr>
<tr>
<td>2018</td>
<td>0.593</td>
<td>113,314</td>
<td>1,878</td>
<td>1,113</td>
<td>0.483</td>
<td>2,785</td>
<td>1,917</td>
<td>926</td>
</tr>
</tbody>
</table>

Table notes:
1. Usage is weather normalized by multiplying by (Normal Worcester EDD/Actual Worcester EDD)
2. Usage is annualized by multiplying by (365 days/Usage days)

Q. What proposals is the Company making in this proceeding that promote sustainability objectives?

A. As discussed in the joint testimony of Company Witnesses Akley and Horton, the Company is initiating a dialogue in this case regarding the use of renewable natural gas, which would assist in lowering greenhouse gas emissions associated with gas usage. Also, as discussed in the joint testimony of Mr. Akley and Mr. Horton, the Company is proposing specific scorecard metrics that are designed to track the Company’s efforts to reduce CO₂ over the PBR Plan term. Lastly, the Company is
proposing two innovative demonstration projects that are designed to test whether additional environmental benefits would be delivered through the application of technology and new business models.

A. Overview of Proposed Demonstration Projects

Q. Why are the proposed demonstration projects important?

A. Demonstration projects are an opportunity to deliver near-term benefits while advancing the body of knowledge in the field of cutting-edge technologies and new business models; and to inform the future application of such technologies and business models.

Q. Would you please describe the Company’s proposed demonstration projects?

A. The Company is proposing two demonstration projects that will move the Commonwealth forward on clean energy innovation; reduce greenhouse gas emissions; and proactively test the abilities and potential benefits of new technologies and innovative business models. Specifically, the Company is presenting the following two demonstration projects:

• **Gas Demand Response**: The gas demand response demonstration project would have a duration of three years and is designed to test whether such a program can shave peak demand; alleviate temporary physical pipeline constraints; reduce the amount of pipeline capacity the Company needs to buy; and reduce greenhouse gas emissions by reducing overall gas usage.

• **Geothermal Network**: The geothermal network demonstration project is designed to test the viability of this business model; assess the enabling technology; and evaluate the costs and benefits.
Q. **How is the Company proposing to recover the costs of the proposed demonstration projects?**

A. In this proceeding, the Company is requesting that the Department approve a factor within the performance-based ratemaking mechanism (“PBRM”) to recover the costs of the demonstration projects. The PBRM is discussed in the testimony of Company Witnesses Akley and Horton. The tariff is included as an attachment to the joint testimony of Company Witnesses Richard Chin and Lisa Cullen.

The Company will update the factor in the PBR formula as part of its annual compliance filing to be submitted on September 15th of each year. Within that filing, the Company will file documentation in support of the costs incurred for the demonstrations and report on the progress towards the identified objectives described further below. Any stakeholder feedback received upon authorization from the Department to proceed with the execution of the demonstration projects in this proceeding will also be presented in each annual filing.

Q. **Has the Department set standards of review regarding the authorization of demonstration programs?**

A. Yes. The Department’s approval of demonstration projects is based on assessment of reasonableness of the size, scope, scale of the specific project (and associated budget) in consideration of the likely benefits to be achieved. NSTAR Electric Company and Western Massachusetts Electric Company, each d/b/a Eversource Energy, D.P.U. 16-178, at 26 (2017). It is anticipated that demonstration projects will have measurable savings and benefits, which means that the projects are not required to be cost-effective.
at the initial testing and evaluation stages. Id. at 28. Testing and evaluation is intended, in part, to determine whether the offering, once scaled, will be cost-effective. Id. Thus, while a showing of cost-effectiveness is not required for a demonstration project, project descriptions and appropriate analyses must support the potential of the project to deliver net benefits in the future; there is no assumption of future net benefits. Id. The demonstration projects must be fully supported by detailed program descriptions as a means for the Department and stakeholders to evaluate the reasonableness of size, scope, and scale of the proposed demonstration. Id. at 29-30.

In D.P.U. 16-178, the Department acknowledged that as the demonstration planning and study efforts evolved, the companies would implement any cost-effective programs and develop targets and benchmarks related to the demonstrations through the energy efficiency programs. Id. at 25-26. The Department established that demonstration projects should be designed to test the ability of the projects to deliver cost-effective benefits to customers. Id. As described below, the Company’s projects are sufficiently detailed to provide the Department with enough information to evaluate the reasonableness of size, scope, and scale of the proposed demonstrations.

For each of the demonstration proposals, described in the sections that follow, the Company provides the following information: (1) a description of the demonstration project and the key research questions that the Company seeks to answer; (2) a description of the target customers and an estimated number of customer participants; (3) a proposed budget; and (4) an estimated timeline.
B. Gas Demand Response Demonstration Project

Q. Why is the Company interested in conducting a demonstration project to explore natural gas demand response in Massachusetts?

A. In the context of efforts to expand and realize environmental goals in Massachusetts, a gas demand response program would offer an additional tool for managing the energy needs of the region. The Company has started to explore how these types of programs, which have been conducted in nearby states in various forms, could be beneficial for the Commonwealth. If the demonstration program successfully reduces overall demand for natural gas, there will be a corresponding decrease in greenhouse gas emissions, which is important to customers and to the Commonwealth in achieving its greenhouse gas reduction goals.

Q. What is natural gas demand response?

A. Demand response programs are common in the electricity sector and have been deployed in the context of the Massachusetts Energy Efficiency plans to help electricity customers monitor and manage their energy usage for several years. As more homes and businesses install smart thermostats and other controls, gas demand-response programs are emerging as a possible avenue to mitigate natural gas demand spikes and infrastructure constraints.

In a general sense, gas demand response programs function similar to electric demand response programs. Customers reduce their consumption in response to a signal they receive from the utility for a set time period. In exchange for temporarily reducing
their usage, the utility pays the customer an incentive.

Q. Has Eversource Energy consulted with other utilities running similar programs?
A. Yes. Representatives from Eversource Energy have consulted with Consolidated Edison of New York, National Grid of New York, and Southern California Gas on their experience with gas demand response initiatives.

Q. Why is the Company making this proposal in this rate case rather than in the context of the statewide energy efficiency program?
A. A natural gas demand reduction project currently cannot be screened for cost effectiveness for possible inclusion in the energy efficiency program. This is because many of the benefits that the natural gas demand reduction demonstration project would be aimed at testing have not been quantified. As part of its proposed demonstration, the Company would embark on a study that will take a more holistic look at the benefits that gas demand response is likely to produce. This study could be done individually by the Company or as part of a statewide or regional effort, similar to the Avoided Energy Supply Cost Study that is typically filed with each Energy Efficiency plan.

The Company’s initial hypothesis is that there are additional benefits that should be explored and quantified (i.e., gas capacity and distribution benefits), so it is appropriate to conduct a demonstration project outside the context of the Energy Efficiency program. If this project is successful and the Company is able to better quantify the benefits produced by this demonstration project, then the Company could consider
moving this offering into the Energy Efficiency program in the future under the
applicable standards for that program.

Q. What are the goals of the demonstration project?

A. The overarching goal of the proposed demonstration project is to see if it is possible to
achieve multiple operational objectives through a gas demand response offering. These
objectives include:

- Reducing demand during peak usage periods
- Reducing the requirements on the LDCs supply portfolio thereby making
interstate pipeline capacity available to market;
- Reducing imported LNG requirements;
- Lowering on-system LNG output; and
- Reducing the amount of supplemental winter season supplies that the
Company needs to buy in the future.

The Company is pursuing these objectives to better understand if it is possible to use
gas demand response to accomplish the following:

- Reduce LNG vapor use during peak times;
- Reduce usage at specifically targeted laterals; and
- Reduce interstate pipeline gas usage during peak times and over 24-hour
periods as pipelines have become more restrictive.

A key goal of this demonstration project is to test whether gas demand response is
feasible at scale and to determine the associated benefits. This goal also includes
testing customer acceptance of a gas demand response type of program.
Q. Please describe the technical hypotheses that will be tested as part of this demonstration project.

A. The Company has identified three technical hypotheses for this demonstration project.

Technical Hypothesis #1 – Reducing the need to use LNG during cold days:

- Reducing peak hourly demand would offset the need to use interstate pipeline/marginal supply (e.g., LNG) in an area to provide support in another area with relatively limited resources.

- LNG is a limited resource (limited to storage tank capacity) during the winter period as it is filled during the ‘off-season’.

- Reducing LNG vaporization during peak demand hours could extend the number of days LNG is available for supply and system support.

Technical Hypothesis #2 – Targeting Areas of Need - Single feed systems:

- Pipeline and/or distribution laterals tend to be “single feed” systems that are more susceptible to capacity constraints and pressure issues during peak demand periods and getting supply to them can be more costly.

- Targeting laterals/relatively more constrained areas may get the best cost benefit ratio as well as increasing the reliability of a “closed” system.

- Other parts of the system might have more potential supply and capacity solutions (The Company would not initially pursue those areas).

Technical Hypothesis #3 – Reducing gas usage during peak hours and over the day:

- Pipeline capacity needs to be capable of meeting peak demand both in terms of volume of commodity but also capacity of the pipeline.

- Capacity contracts are designed based upon the maximum daily quantity and, as a result, must be large enough to meet 24 hours of demand.

- Shifting gas usage throughout the day may help address hourly capacity constraints but wouldn’t necessarily reduce the total volume of gas that needs to be purchased for the day as pipelines are contracted for on a daily basis.
Q. What questions are you trying to answer by testing the technical hypotheses listed above as part of this demonstration?

A. There are several key questions the Company expects to answer through this demonstration project, including:

- Is it possible to reduce the need for marginal gas supplies on the coldest days through gas demand response?

- Is it possible to use a gas demand response program to target areas of the pipeline/distribution system that are most prone to congestion and may require expensive upgrades in the future?

- Is it possible to use a gas demand response program to alleviate times of peak demand for a few hours and reduce overall usage during the course of a day?

Q. Are there additional questions the Company expects to answer from the gas demand response demonstration?

A. Yes. In addition to testing the technical hypotheses and corresponding “big picture” questions listed above, the Company intends to use the gas demand response demonstration and the corresponding evaluation to help answer the following questions:

- What is the appropriate $/therm incentive level to induce program participation? Is there a minimum total project incentive value needed to get customers interested?

- What are the most common strategies employed by customers to reduce gas usage, both during the times of peak demand and during the course of 24 hours?

- What are the most common obstacles to customers participating in this type of program?

- What, if any, are the impacts on customer comfort?
• What is the appropriate metering configuration and granularity of data needed to accurately measure gas reductions?

• What are the optimal communication and outreach strategies to induce customer participation?

• What opportunities exist at customer sites for combining automation and communication strategies?

Q. Will this demonstration project be subject to independent third-party evaluation?
A. Yes, this demonstration project will be evaluated by a third-party evaluation consultant. The demonstration project design and subsequent evaluation will be set up to help answer the questions listed in the sections above. The Company expects to share the results of this evaluation with other utilities in the Commonwealth through the appropriate channels.

Q. When will the Company use the results of this demonstration project?
A. The reliability of the gas system is paramount, and as such, the Company intends to wait until the demonstration project is complete and it has the opportunity to fully analyze the results of the accompanying evaluation before it makes a determination as to whether any changes to its planning, procurement, or operational processes are warranted.
Q. How will savings likely be measured?

A. As mentioned above, the Company anticipates utilizing an independent third-party evaluation firm to assist in calculating and confirming program savings. One likely approach for calculating savings is using hourly interval data to develop a baseline using previous similar days and comparing usage during an event day to the baseline. For example, the baseline may be developed by using the highest average usage during five of the last ten days from 6:00 a.m. to 9:00 a.m. Certain days would be excluded from the baseline calculation such as holidays, days when other demand response events have been called, any days with abnormally low usage, or weekends if the event happens on a weekday (or weekdays if the events happen on a weekend). The Company would work with the third-party evaluation firm to determine if any in-day weather adjustments were appropriate.

Q. What are the expected benefits of the natural gas demand reduction demonstration project proposed by the Company?

A. As part of this demonstration, the Company would seek to study and quantify the potential benefits of a gas demand response program, including:

- Avoided costs associated with pipeline/infrastructure/supply contract costs;
- Increasing flexibility of existing assets by reducing straining on existing assets during peak periods;
- Reduced need for natural gas, including LNG during peak periods; and
- Freeing up capacity or creating a “cushion” to allow for system optimization.
As mentioned above, the Company will work with a third-party evaluation firm to:

1. answer the research questions associated with this project that are described above;
2. and (2) quantify the project benefits in two ways:

 1. What is the actual impact of the gas demand response program, i.e., how much gas was actually saved and when, for both the residential and C&I sectors?
 2. What is the conceptual monetary value of those savings – develop a value similar to those values produced in the Avoided Energy Supply Cost study that could be used to screen future projects?

It should be noted that it may be necessary to use two different evaluation firms in order to meet the evaluation objectives listed above.

Q. Please describe in more detail how the natural gas demand reduction demonstration project would work

A. The Company is proposing to include both a Commercial & Industrial (“C&I”) component and a residential component within the gas demand demonstration project. Within the C&I sector, the Company is proposing a technology agnostic approach where customers will be asked to reduce gas usage during certain time periods. This will be a pay-for-performance program design where customers will be paid an incentive based on their actual measured reduction during the defined time period. The Company will set up a tiered incentive structure where the bulk of the incentive is earmarked for performance during the defined time period, but a bonus will be paid for
customers that can reduce their gas usage over a 24-hour period. C&I customers can work with curtailment service providers (“CSPs”). CSPs provide demand response equipment and services. In return for their services, customers split their incentive payment with them. The split is determined through negotiations with the CSP. There is not a requirement to use a CSP to participate or earn incentives, but their services often reduce operational impacts and can provide additional valuable information about a customer’s energy use.

The key components of the C&I program would be as follows:

- Technology: Technology agnostic approach but liquid fossil fuel backup system would not be accepted. Anticipated gas load reduction measures include using electric backup heat source like a heat pump, change industrial processes, curtail discretionary loads, reduce Combined Heat and Power generation, or changing heating or hot water set points.

- Dispatch Trigger Threshold: Temperature based threshold.

- Number of Anticipated Dispatches: 3-8 calls per season.

- Customer Notification: At least day ahead notice.

- Timeline When Events Can Be Called: November, December, January, February, March.

- Dispatch Conditions: Measured reduction between the hours of 6:00 a.m. and 9:00 a.m. during event days with a bonus paid for a net reduction over the 24-hour gas day.

- Eligibility Requirements: Must take firm gas delivery service from NSTAR Gas. Cannot be interruptible service.

- Recruitment: Through approved CSPs or directly through Eversource Energy account executives.

- Minimum Election for Inclusion: Minimum of 50 therms of curtailable gas
• Base Incentive Level: $45/therm/season (6:00 a.m. to 9:00 a.m.)—all based on pay for performance.

• Bonus Incentive: $2/therm/qualifying event (all day reduction if base participation met for that event).

• Metering/Measurement: Need to be able to collect at least hourly interval data.

The residential component of the demand response program will leverage experience gained from the residential electric demand response program design. The Company will contract for a software platform to enroll customers that have wi-fi thermostats and gas heating. During gas demand response events, the temperature on the customer’s thermostat will be reduced by a couple of degrees for a few hours. Customers will have the ability to opt-out of an event if necessary. The Company will also institute a minimum temperature threshold that the temperature in a house cannot go under.

The key components of the residential program are as follows:

• Technology: Wi-fi thermostat-based demand response.

• Dispatch Trigger Threshold: Temperature based threshold.

• Number of Anticipated Dispatches: 3 to 8 calls per season

• Customer Notification: At least day ahead notice.

• Timeline When Events Can Be Called: November, December, January, February, March.

• Dispatch Conditions: 1 to 3-degree setback for 2 to 8 hours. Minimum temperature will not go below 64 degrees at night and 68 degrees during the day. Dispatch will occur from 6:00 a.m. to 9:00 a.m.

• Eligibility Requirements: NSTAR Gas customer with a gas furnace or boiler connected to a wi-fi thermostat.
 Dispatch Platform: Contracted Software Platform

Recruitment: Similar to electric demand response, will leverage thermostat manufacturer marketing channels through in-app notifications and emails.

Enrollment: Through Contracted Software & OEM platforms.

Incentive: $25 to sign up and $20 per heating season (Nov-Mar) payment.

Metering/Measurement: Prescriptive, based on EM&V results.

Q. How does the Company plan to recruit participants for the demonstration program and has the Company done any outreach thus far?

A. For the residential part of the program, customers will be recruited through wi-fi thermostat manufacturer marketing channels such as in-app notifications and emails. This approach has been successful in the residential electric demand response program.

For the C&I part of the program, customers will be recruited though approved CSPs or directly through Eversource Energy account executives.

Q. When do you anticipate calling events?

A. The Company anticipates calling events between 6:00 a.m. to 9:00 a.m. when system hourly throughput is typically the highest during winter months.
Q. Please describe the equipment that will be needed and the investments that will be necessary to enable the natural gas demand reduction demonstration project?

A. The Company anticipates utilizing existing metering equipment where possible. The Company currently has a type of interval meter for its largest customers. For the purpose of this demonstration, the Company would add a small piece of hardware at the customer site that could read pulse outputs from the meter and would have an embedded mini cell modem in a National Electrical Manufacturers Association rated enclosure. The corresponding software provides a repository of the interval data and some minimal graphing capabilities. This configuration allows the customer data to be pushed into the cloud where it would be accessible for download by the Company and provides more real time access to the gas interval data. The Company is providing a best estimate of the metering costs as part of this proposal, but these costs may increase
if the Company is not able to leverage its existing metering infrastructure as currently envisioned.

For the residential portion of this demonstration project, the Company would leverage the existing software platform that has already been procured through the electric demand response programs and implemented in the Energy Efficiency program. There is a fixed cost associated with the software platform paid through the Energy Efficiency program regardless of whether a gas demand response program is created and approved by the Department. Therefore, the Company proposes that the fixed cost remain in the Energy Efficiency program and any incremental variable software or vendor costs for running a gas demand response program will be recovered through rates.

Q. What is the current estimated cost for the natural gas demand reduction demonstration project?

A. The estimated costs for the natural gas demand reduction project are as follows:

<table>
<thead>
<tr>
<th>Costs</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign Up Incentive</td>
<td>$75,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Seasonal Incentive</td>
<td>$60,000</td>
<td>$57,000</td>
<td>$54,150</td>
</tr>
<tr>
<td>OEM Costs (per device)</td>
<td>$105,000</td>
<td>$99,750</td>
<td>$94,763</td>
</tr>
<tr>
<td>OEM Fixed Set Up Costs</td>
<td>$25,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$265,000</td>
<td>$156,750</td>
<td>$148,912.50</td>
</tr>
<tr>
<td>Software Platform Variable Costs</td>
<td>$26,500.00</td>
<td>$15,675.00</td>
<td>$14,891.25</td>
</tr>
<tr>
<td>Software Platform Fixed Cost</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Internal Labor .5 FTE</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Total Residential Costs</td>
<td>$391,500</td>
<td>$272,425</td>
<td>$263,804</td>
</tr>
</tbody>
</table>
ANTICIPATED C&I COSTS

<table>
<thead>
<tr>
<th>Costs</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Customer Incentives</td>
<td>$162,000</td>
<td>$162,000</td>
<td>$162,000</td>
</tr>
<tr>
<td>Bonus Customer Incentive</td>
<td>$18,000</td>
<td>$18,000</td>
<td>$18,000</td>
</tr>
<tr>
<td>Metering Costs</td>
<td>$96,000</td>
<td>$96,000</td>
<td>$96,000</td>
</tr>
<tr>
<td>Internal Labor .5 FTE</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Total Costs</td>
<td>$376,000</td>
<td>$376,000</td>
<td>$376,000</td>
</tr>
</tbody>
</table>

ANTICIPATED TOTAL COSTS

<table>
<thead>
<tr>
<th>Costs</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Incentives</td>
<td>$315,000</td>
<td>$237,000</td>
<td>$234,150</td>
</tr>
<tr>
<td>Meter Data and Collection</td>
<td>$96,000</td>
<td>$96,000</td>
<td>$96,000</td>
</tr>
<tr>
<td>Admin</td>
<td>$356,500</td>
<td>$315,425</td>
<td>$309,653.75</td>
</tr>
<tr>
<td>Evaluation</td>
<td>$250,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Annual Total</td>
<td>$1,017,500</td>
<td>$648,425</td>
<td>$639,804</td>
</tr>
</tbody>
</table>

| 3 Year Total | | | **$2,305,729** |

1. **Q.** How many participants do you expect with the estimated budget above?
2. **A.** The Company anticipates that it can recruit up to 3,000 residential program participants and approximately 50 C&I customers. However, for C&I customers, there must be some flexibility in the total number of customers in order to get the desired level of savings. As the demonstration project is rolled it out, it may be necessary to enroll fewer customers but leverage higher savings per customer in order to reach the desired savings levels.

3. **Q.** How does the Company propose to report on the progress and results of the natural gas demand reduction project?
4. **A.** As noted above, the Company will file reports annually on the progress of the demonstration project and any stakeholder feedback received upon authorization from
the Department to proceed with the execution of the demonstration projects in this proceeding.

Q. Was gas demand response considered as part of the 2019-2021 Energy Efficiency Plans?

A. Yes, gas demand response was considered for possible inclusion in the 2019-2021 Energy Efficiency plans but ultimately rejected by the Program Administrators due to concerns over cost-effectiveness, safety, and operational effectiveness concerns.

Q. What is different about this proposal that makes it appropriate to test gas demand response at this time?

A. The Company still does not know if offering gas demand response is cost-effective but as noted earlier, the Company is committed to developing the values necessary to determine if gas demand response can be cost effective. This will be done in two ways:

 (1) The Company will determine the level of savings from a gas demand response program over a defined event horizon and over the course of 24 hours.

 (2) The Company will support a study that quantifies the dollar values associated with reducing gas usage at peak times.

To alleviate concerns around safety, the Company will institute program parameters that ensure temperatures in homes do not fall below a certain threshold, which will be set at 68 degrees during the day and 64 degrees at night per 105 CMR 410.201.9

From an operations perspective, the Company is proposing a program design that is unique in that it leverages the best practices from other program designs from across the country. This includes an incentive design that encourages significant reductions during a short time window and a bonus incentive for reducing gas demand over the course of the day. The Company is proposing to not allow liquid fossil backup heating sources as a compliance mechanism so that it can ensure there is an overall beneficial environmental impact.

C. Geothermal Network Demonstration Project

Q. What is a Geothermal Network?

A. A Geothermal Network is the use of geothermal energy to provide heating and/or cooling to individual and commercial buildings through distribution by pipes.

Q. Why is it important to explore the potential of a geothermal network at this time?

A. Because geothermal networks provide a low-carbon source of heating, exploring the potential of a geothermal network is critical as the Commonwealth seeks to reduce greenhouse gas emissions pursuant to the Global Warming Solutions Act. As shown in the figure below, emissions from the power sector in Massachusetts have declined over time while emissions from the thermal sector have remained relatively flat. Testing the viability of geothermal networks at this time will allow the Company to better understand if this type of offering is scalable and provide the Company with real world experience of constructing and maintaining these networks. The Company will share its experiences with interested stakeholders and its peer utilities in the
Q. Please provide an overview of geothermal technology and more specifically geothermal networks.

A. At a high level, geothermal technologies take advantage of the relatively stable temperature of the ground to provide heating and cooling. A heat exchanger extracts heat out of the ground in winter and extracts heat out of buildings and pushes it into the ground in summer. Geothermal systems tend to be very efficient, with Coefficients of Performance of 300 to 600 percent. That means that one unit of electricity used to drive the heat pump can extract three to six times the energy from the ground.

To deliver space heating and cooling, geothermal systems transfer energy between a building and the earth by circulating water (or a non-freezing liquid) to a series of
underground piping. This piping can be placed in long horizontal trenches and/or deep vertical wells ranging between 300 and 1500 feet deep. Local geological conditions, space availability, costs, permitting and other factors will influence the selection and design of the system. Because vertical systems require significantly less space when compared to horizontal systems, they are expected be the primary design to service a broad range of customers. Proper design requires consideration for both peak and annual building heating and cooling loads as well as multi-year modeling of water and ground temperatures.

Geothermal systems distribute heating and cooling throughout a building by circulating warm air, cold air, and water within the building. This is similar to how fossil fuel furnaces and boilers function, although geothermal systems operate in different temperature ranges. To accommodate these operating temperatures, existing interior building equipment may need upgrading and/or replacement to provide adequate heating and cooling during the coldest and warmest days of the year.

Q. Generally speaking, what are the expected benefits of a geothermal network?

A. The Company expects that there would be many benefits of a geothermal network. Geothermal networks and ground source heat pumps (“GSHP”) would provide customers with an additional choice for heating besides natural gas or delivered fuels. The Company is seeking to test if geothermal heating could be an alternative for customers that are either too far away from a gas pipeline or simply do not want to use
natural gas. From a customer perspective, geothermal networks and GSHPs could provide the following benefits:

- Less costly ongoing heating/cooling system;
- A reliable system that does not have components such as a condensing unit outside of the house;
- Cleaner, safer, quieter system (no on-site combustion within the house means no carbon dioxide);
- Provides both heating and cooling;
- GSHP equipment is located inside the building so there is an ease of repair/maintenance and no aesthetic impacts; and
- Conventional heating and cooling equipment typically has a life expectancy of 5 to 10 years, whereas GSHPs are estimated at 25 years for the inside heat pumps and 50+ years for the ground loop.

The Company has reviewed estimates that geothermal networks and GSHPs can reduce carbon emissions by up to 60 percent for an average residential customer. Utilizing geothermal networks would provide the Commonwealth with an additional avenue to help meet its aggressive carbon reduction goals.

Q. Please provide an overview of the Company’s proposed geothermal network demonstration project.

A. The Company is proposing to test geothermal networks in a series of targeted scenarios. These scenarios include establishing geothermal networks at multi-family buildings, in mixed-use residential and commercial areas, and residential neighborhoods.

These scenarios are reflective of what the Company assumes it would encounter if this offering was brought to scale, and as such, it is important that the demonstration project cover these different types of opportunities. The Company proposes an initial three-
year term for the demonstration projects so that the Company can gather enough data to make a determination as to whether or not it should continue to offer geothermal networks to its customers. It should be emphasized that, although the Company believes that the scenarios listed below are appropriate as envisioned, it is critical to retain flexibility while rolling out and executing the demonstration project so that the Company can target different opportunities if appropriate, adapt to actual experience, and address case-specific circumstances.

Scenario 1 of the demonstration project would seek to evaluate a large residential load profile in a dense geographic footprint such as a geothermal network that would serve a single multi-family building. For the purposes of this demonstration, the Company would like to target a low-income multi-family building. Part of this aspect of the demonstration project would require the Company to determine what type of geothermal network would be most appropriate given the geographic constraints of a single building and whether it would be necessary to stay within the property boundary of the building or if it would be necessary to go into the public way.

Scenario 2 of the demonstration project would seek to evaluate a large mixed-use profile such as a geothermal network in a dense urban environment that comprised both residential and C&I customers or in an area with different types of C&I customers with different heating needs. Seeking out an area that has both residential and C&I customers or different types of C&I customers would allow the Company to better understand if there are increased efficiencies by having customers with varying heating
and cooling needs on the same geothermal network.

Scenario 3 of the demonstration project would seek to evaluate a large residential load profile in an expanded geographic footprint such as a geothermal network in a residential neighborhood. Geothermal networks that support single family homes are expected to have different requirements than in the other scenarios due to a larger distance expected between each home. The Company would explore opportunities to develop geothermal networks that need to be placed in public right of ways and in areas where it may not be necessary to go through public right of ways. The Company could possibly utilize shared space between houses or go through streets if necessary. Depending on the opportunity, the Company may be required to obtain easements from the property holders or permits to perform construction in public streets, or to consider alternative configurations depending upon the number of customers, the distance between structures, load profiles, and other unanticipated or unforeseeable circumstances. The goal of the demonstration projects is to closely mimic the type of scenarios that the Company is likely to face if the service is offered at scale.

In each of these scenarios, the Company would be responsible for contracting with the well drilling teams, the companies that are responsible for setting up and installing the pipes for the geothermal network, and for maintaining the appropriate temperature and pressure within the pipes.

The three-part demonstration project will provide the Company with comprehensive
field data in the type of scenarios it is most likely to encounter at a more wide-spread scale, specifically multi-family buildings, mixed-use residential and commercial, and predominately residential neighborhoods.

Q. What is the proposed timeline for construction and data collection?
A. The Company anticipates that it could substantially complete customer acquisition, zoning, engineer/contractor selection, technical design, ground loop and pumping station construction, geothermal network testing and commissioning, and customer HVAC installation and retrofits within approximately 16-18 months. An illustrative project Gantt Chart is included as Exhibit ES-PMC/MRG-2. This timeline is a key assumption that would be tested as part of the demonstration. Data collection and measurement and verification activities would follow at the completion of the geothermal network construction and customer HVAC retrofits. It should be noted that a one-month delay in project approval does not necessarily equate to a one-month delay in project completion. This is because certain activities such as drilling or street construction typically cannot happen during certain winter months.

Q. How does the Company plan to identify locations for the geothermal network demonstration project?
A. The Company would use various means it has available to identify appropriate locations. For example, the Company expects to leverage its existing relationships with LEAN, ABCD, or other agencies to identify a low-income multi-family building that would be appropriate for this demonstration. The Company could also leverage its
account executives and gas sales team to identify geographic locations or specific customers that may be good candidates for this demonstration project.

Q. Please describe the investments that will be necessary to enable the geothermal network demonstration project?

A. For the purposes of this demonstration project, the Company anticipates investments in the drilling of the wells, the installation of pipes and ongoing O&M costs (including energy costs), and the installation of the necessary heat pump equipment. The Company expects typical costs and equipment for the geothermal networks to include pumps, boilers, cooling towers, piping, controls, and enclosures. The Company expects typical costs and equipment at the customer site to enable this demonstration project to include ground source heat pumps, duct work upgrades (if necessary), and increased weatherization. The Company would also be responsible for the upkeep and maintenance of the geothermal networks outside of any individual customer’s physical facility for the duration of the three-year demonstration project. If this service was offered more broadly, the installation of the heat pump equipment would be located inside of a customer’s facility and would be the responsibility of the customer. In order to expedite the timeline for getting projects in the ground, the Company is proposing as part of this demonstration project only, to fund the heat pump equipment in a customer’s home or business.
Q. What is the proposed ownership model for the assets that will be developed as part of the proposed geothermal network demonstration project?

A. The Company would propose to own the geothermal networks that are physically outside the boundary of a customer’s building for the duration of the demonstration project. The Company would not propose to own any of the equipment that would be inside of a customer’s building such as the ground source heat pump. At the end of the three-year demonstration project, the Company will either retain ownership of the equipment in the event that it offers geothermal networks as a permanent service option or ownership of the in-home equipment would revert to customers if the Company does not continue the service. In either case, the Company is committed to work with each individual customer, on a case-by-case basis, to ensure their thermal needs are met.

Q. What is the current estimated cost for the geothermal network demonstration project?

A. The following costs are the Company’s best estimates, which were developed by meeting with geothermal network installers, reviewing literature from other projects from across the country and talking to peer utilities. The estimated costs are inclusive of drilling wells, installing appropriate piping and pumps, and the ground source heat pumps within a customer’s facility or home. These estimated costs also include the required internal labor to run the demonstration project and the evaluation necessary to determine if the demonstration was successful. These estimates are three-year costs but it should be noted that actual site characteristics will have impacts on the final costs.
Detailed cost estimates are included as Exhibit ES-PMC/MRG-3.10

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$10,179,000</td>
</tr>
<tr>
<td>Direct Staff and Overhead Expenses</td>
<td>$1,073,311</td>
</tr>
<tr>
<td>O&M and Energy Expenses</td>
<td>$536,734</td>
</tr>
<tr>
<td>O&M Expenses, Maintenance and Performance Monitoring</td>
<td>$721,600</td>
</tr>
<tr>
<td>Third-Party Evaluation</td>
<td>$300,000</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$12,810,645</td>
</tr>
</tbody>
</table>

These estimates may be further disaggregated by the different scenarios described above. Specifically, the estimated costs are disaggregated into more detail as follows:

Scenario 1: Multi-family Building

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$1,692,000</td>
</tr>
<tr>
<td>Direct Staff and Overhead Expenses</td>
<td>$165,125</td>
</tr>
<tr>
<td>O&M and Energy Expenses</td>
<td>$82,714</td>
</tr>
<tr>
<td>O&M Expenses, Maintenance and Performance Monitoring</td>
<td>$111,015</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$2,050,854</td>
</tr>
</tbody>
</table>

Scenario 2: Dense Urban Environment/Mixed Use Area

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$7,506,000</td>
</tr>
<tr>
<td>Direct Staff and Overhead Expenses</td>
<td>$825,624</td>
</tr>
<tr>
<td>O&M and Energy Expenses</td>
<td>$412,482</td>
</tr>
<tr>
<td>O&M Expenses, Maintenance and Performance Monitoring</td>
<td>$555,077</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$9,299,182</td>
</tr>
</tbody>
</table>

10 The conceptual design estimates provided by the Company here may vary from pre-construction engineering design estimates. If approved by the Department, the Company plans to develop a detailed pre-construction engineering design estimate.
Scenario 3: Residential Neighborhood/Community

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$981,000</td>
</tr>
<tr>
<td>Direct Staff and Overhead Expenses</td>
<td>$82,562</td>
</tr>
<tr>
<td>O&M and Energy Expenses</td>
<td>$41,538</td>
</tr>
<tr>
<td>O&M Expenses, Maintenance and Performance Monitoring</td>
<td>$55,508</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$1,160,608</td>
</tr>
</tbody>
</table>

In addition, having a third-party evaluator review the project and its effectiveness would be beneficial. The estimated cost for the evaluation is $300,000.

Q. How does the Company plan on procuring the assets associated with the geothermal network demonstration project?

A. The Company anticipates a competitive solicitation process in order to procure and construct the assets associated with the geothermal network demonstration project.

Q. What are anticipated areas of study related to the geothermal network demonstration project?

A. The Company has developed several high-level questions that are critical to determine whether it should offer geothermal networks as a service on an ongoing basis. The Company would gather data in an effort to answer the following high-level questions:

- Is it feasible to provide geothermal wells/loops and GSHPs as an alternative to extending gas service?
- What is the appropriate financial and business model?
- What is the appropriate rate structure and metering infrastructure?
- How does the Company leverage existing utility expertise and apply it to new area?
- What is required to maintain a GSHP system of wells? How to measure and maintain well field performance?
Is a GSHP system sufficient for all heating and cooling needs or is a supplemental system required?

Can the Company leverage existing trenching or other construction activities that are being undertaken as part of normal gas or electric operations in order to install geothermal equipment?

To answer the questions listed above, the Company would propose to gather data in the following areas with the associated data points.

<table>
<thead>
<tr>
<th>Topic Area</th>
<th>Data Points to Collect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validate Installation and Costs</td>
<td>• System installation costs
• Ongoing O&M costs</td>
</tr>
<tr>
<td>Customer Acceptance</td>
<td>• Customer Satisfaction surveys
• Customer comfort</td>
</tr>
<tr>
<td>Carbon Reductions</td>
<td>• Emission reductions
• System performance</td>
</tr>
<tr>
<td>Technology Performance</td>
<td>• System performance
• Changes in customer energy consumption</td>
</tr>
<tr>
<td>Cost Savings</td>
<td>• Changes in customer heating and cooling costs</td>
</tr>
</tbody>
</table>

Q. In addition to the data points above, are there specific data points the Company is seeking to collect that would allow it to better understand the requirements to deploy geothermal networks at scale?

A. Yes, in addition to the data points listed above, the Company is interested in better understanding the specific data points below.
<table>
<thead>
<tr>
<th>Data Point</th>
<th>Significance & Learning</th>
<th>How Measured / Collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground loop water supply temperatures (°F) to buildings; seasonal variations</td>
<td>Determine appropriate and acceptable seasonal variations in wellfield temperatures given customer-side equipment requirements</td>
<td>Btu and temperature meters on the ground-loop heat exchanger’s supply and return connections; heat flows and temperatures logged and stored every hour throughout operational life of project</td>
</tr>
<tr>
<td>Ground loop water supply temperatures (°F) to buildings; year-over-year comparisons</td>
<td>Assess the need for supplemental heating and cooling equipment (i.e., cooling tower and boiler) in order to maintain the effectiveness of the ground loop throughout its operational life</td>
<td>Btu and temperature meters on the ground-loop heat exchanger’s supply and return connections; heat flows and temperatures logged and stored every hour throughout operational life of project</td>
</tr>
<tr>
<td>Ground loop delta T (°F) between return and supply over time</td>
<td>Study the allowable tolerance for delta T based on customer’s equipment ratings, performance, etc.</td>
<td>Btu and temperature meters on the ground-loop heat exchanger’s supply and return connections; heat flows and temperatures logged and stored every hour throughout operational life of project</td>
</tr>
<tr>
<td>Cost / time required to charge the wellfield (if needed to balance the wellfield temperature)</td>
<td>Best practices for cost-effectively, sustainably charging the wellfield (e.g. during nighttime off-peak hours if an electric boiler on a TOU rate structure)</td>
<td>Boiler trends (supply/return temperatures, fire rate, flow) logged on an hourly basis and stored throughout operational life of project</td>
</tr>
<tr>
<td>Ground loop water flow (GPM) over time</td>
<td>Assess the flow requirements of the system during varying climate conditions; identify any central flow imbalances (i.e., leaks)</td>
<td>Flow meters on the ground-loop heat exchanger’s supply and return connections; water flows (GPM) logged and stored every hour throughout operational life of project</td>
</tr>
<tr>
<td>Addition of make-up water/glycol (gallons) over time (if required due to leaks, flushing, etc.)</td>
<td>Assess the typical volume and cost requirements of keeping the system full of working fluid</td>
<td>Consumption meter (gallons) on the make-up system; log of glycol purchases, if applicable</td>
</tr>
<tr>
<td>Data Point</td>
<td>Significance & Learning</td>
<td>How Measured / Collected</td>
</tr>
<tr>
<td>------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Run-time and electricity consumption (hours and kWh) of central loop infrastructure</td>
<td>Better understand the operational load profile and cost of the central pumping system</td>
<td>Trends programmed for each central pump</td>
</tr>
<tr>
<td>Cost of customer building-side HVAC installation (maximum, minimum, median, average)</td>
<td>Better understand (and, in the future, advise on) the cost to install or retrofit existing customer-side HVAC systems to function with a community ground loop; understand cost range across system types</td>
<td>Log using invoiced cost for each customer’s system</td>
</tr>
<tr>
<td>Cost of annual customer-side preventative maintenance and unscheduled repairs</td>
<td>Better understand (and, in the future, advise on) the customer-side maintenance and repair costs to be incurred when connecting to a community ground-loop</td>
<td>Log using invoiced cost for each customer’s system</td>
</tr>
<tr>
<td>Amount of water quality impact / scale buildup (from both Company and customer sides of loop)</td>
<td>Understand the tendency of scale to occur and whether condenser water should be provided directly to customers or via a heat exchanger; determine who would own the heat exchanger</td>
<td>Monthly water quality tests (PPM, scale, etc.) in two locations within the central loop as well as at two randomly-selected customer connections</td>
</tr>
<tr>
<td>Occuptant comfort / space conditioning</td>
<td>Understand customers’ satisfaction levels with the GSHP condenser water service</td>
<td>Surveys</td>
</tr>
<tr>
<td>Timeframes</td>
<td>Better understand time requirements for customer acquisition, equipment and labor procurement, and construction activities across a range of installation types</td>
<td>Information logged during course of project management</td>
</tr>
</tbody>
</table>

1. **Q.** What are the expected benefits of the specific geothermal network demonstration project proposed by the Company?
2. **A.** Many of the expected benefits of a geothermal network demonstration project have been listed above. This demonstration project specifically will allow the Company to
obtain first-hand operational experience on how to construct and maintain geothermal networks. It will allow the Company to become familiarized with the geothermal vendor ecosystem. The Company will be exposed to operating geothermal networks in the Massachusetts-specific climate, which will also allow the Company to understand if GSHPs can provide all of the heating and cooling needs of a customer while maintaining an appropriate level of customer comfort.

Q. Please describe the Company’s proposed evaluation plan for the geothermal network demonstration project.

A. The Company will contract with an independent third-party evaluation firm to help the Company review the success of the demonstration project. The Company will review the main objectives of the demonstration project with the evaluation firm ahead of time and lay out the key research questions to be answered in order to ensure that the final evaluation provided the necessary feedback for the Company to decide if it should offer this service more broadly. The Company will work with the evaluation vendor throughout the demonstration project so that the appropriate protocols can be put in place to ensure that outcomes are accurately measured.

Q. How does the Company propose to report on the progress and results of the geothermal network demonstration project?

A. As noted above, the Company will file reports as part of its annual PBRM filing to report on the progress of the demonstration project and any stakeholder feedback received upon authorization from the Department to proceed with the execution of the demonstration projects in this proceeding.
Q. Why is this demonstration project appropriate in the context of this case?

A. Fundamentally, NSTAR Gas provides a service that allows customers to heat their home or business. Similarly, the provision of a geothermal network would allow customers to heat their home or business. Both the natural gas business and providing geothermal networks share common aspects such as:

- Capital intensive – there are large upfront costs for infrastructure;
- Buried/underground infrastructure: trenching, installing pipes in the ground;
- Long lived assets – 30+ year lifespan;
- Regulated service – siting and right of way issues; and
- Monitoring system conditions – pumping, monitoring, and maintaining proper pressure and temperature in pipes.

Due to these similarities, it is appropriate and a natural extension of the natural gas business to offer—at a minimum—the proposed demonstration project, and if successful, a more comprehensive offering.

Q. Would offering geothermal networks through NSTAR Gas help overcome many of the common barriers to more widespread adoption of geothermal networks and ground source heat pumps?

A. Yes. Many common barriers that currently prevent the more widespread adoption of geothermal networks and GSHPs may be alleviated if this service is provided by the utility. Common customer obstacles to installing GSHPs include:

- Large upfront capital costs for the geothermal network;
- Reluctance to spend money on infrastructure when customer might be in space for limited time period; and
- Maintaining infrastructure outside of the customer’s premises.

Each one of these obstacles can be overcome by the utility and in fact many of these issues are commonplace for the existing natural gas business model. The Company frequently tackles projects with large upfront capital costs as it can make investments in capital projects and then rate base those investments. The Company is in the business of owning, operating, and maintaining assets over a long-time period, and as such, does not have similar concerns of a customer that may be in a building for only a limited time period and does not want to invest in a geothermal network. And lastly, the Company has expertise in building and operating infrastructure that might be in public or private right of ways. This includes extensive experience in permitting and obtaining permission to construct in rights of way. This would alleviate a customer’s concern about needing to construct or maintain a geothermal network that might span outside of its property boundary.

Q. **Is the Company proposing any new rates as part of this demonstration project?**

A. As part of this demonstration, the Company plans to test how best to charge customers for access to geothermal networks. It is not anticipated that customers would be charged a fee equivalent to the cost of the project but that a nominal rate schedule may be set up to test how best to charge for this new service. Additionally, the Company will consider how best to charge customers for this service in order to make sure that at scale, customers are equitably paying for the service they were receiving.
V. SCORECARD METRICS

Q. Is the Company subject to service-quality requirements and associated penalties under the Department’s Service Quality Guidelines?

A. Yes. The Company is subject to the Department’s Service Quality Guidelines (“SQ Guidelines”), which include penalty metrics for performance falling below the requirement benchmarks.

Pursuant to G.L. c. 164, §§ 1E and 1I, all LDCs must file annual service-quality reports with the Department on or before March 1st. Each report compares annual performance by the respective LDC with the Department’s service-quality metrics established in Order Adopting Revised Service Quality Standards, D.P.U. 12-120-D (2015) and D.P.U. 12-120-D, Attachment A (2015) (“SQ Guidelines”). The SQ Guidelines establish three penalty measures for LDCs: (1) Class I and Class II Odor Call Response; (2) Service Appointments Kept as Scheduled; and (3) Customer Complaints and Customer Credit Cases.

Under the first measure, the Company must respond to 97 percent of all Class I and Class II Odor Calls in 60 minutes and the Company is subject to a fixed revenue penalty formula if the metric is not met. SQ Guidelines at Sections IV.B.1, V.B.2. The second metric measures the percentage of scheduled Service Appointments met by Company personnel on the same day requested. SQ Guidelines at Section II.A. The Company is subject to a revenue penalty for this metric if performance is below the Company’s average performance. SQ Guidelines at Section V.B.3. The third metric measures
residential customer contact with the Department, which is categorized by the
Department as a residential Customer Complaint relating to payment and arrearage
management plans, inability to pay, shut-off notices, and terminations. SQ Guidelines
at Sections II.B.2, V.B.3. The Company is subject to a revenue penalty for this metric
if performance is below the Company’s average performance.

Q. What is the purpose of scorecard metrics, and why are they helpful to the
Department and to the Company’s customers?
A. The Company’s proposed scorecard metrics are aligned with several of the
Department’s policy objectives and will allow the Department and stakeholders to
monitor the Company’s progress during the term of the PBR Plan.

Q. Please describe the scorecard metrics that the Company is proposing in this
proceeding.
A. The Company is proposing 12 scorecard metrics, organized by three high-level
categories that are summarized in the tables below.
<table>
<thead>
<tr>
<th>Scorecard Metric</th>
<th>High-Level Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency Response Rate Within 45 Minutes</td>
<td>The metric will measure the elapsed time from when a report of a gas odor call is received and when a Company representative arrives at the scene. The Company is committing to a target of a 95-percent response within 45 minutes, which exceeds the Department’s current requirement.</td>
</tr>
<tr>
<td>Total Damages Per 1,000 Tickets</td>
<td>This metric will measure the ratio of the number of times the Company’s gas distribution facilities are damaged per 1,000 tickets. The Company is committing to a 10-percent improvement over the baseline by Year Five.</td>
</tr>
<tr>
<td>DART Rate</td>
<td>This metric will measure the number of cases resulting in Days Away from Work, Restricted Work Activity, and/or Job Transfer expressed as the number of events per 200,000 hours worked. The Company is committing to a 10-percent improvement over the baseline by Year Five.</td>
</tr>
<tr>
<td>Total Grade 2 Leaks Older than 9 Months</td>
<td>This metric will measure the number of Open Grade 2 Leaks older than nine months recorded at the end of the calendar year. The Company is committing to completing 75 percent of Grade 2 leaks in 9 months or less (which is three months faster than statutory requirement).</td>
</tr>
<tr>
<td>PSMS Implementation</td>
<td>This metric evaluates the annual implementation of the Pipeline Safety Management System (PSMS), as measured by a third-party assessment.</td>
</tr>
</tbody>
</table>
CUSTOMER SATISFACTION & ENGAGEMENT

<table>
<thead>
<tr>
<th>Scorecard Metric</th>
<th>High-Level Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.D. Power Survey (Safety & Reliability Factor)</td>
<td>This metric will measure in the Safety & Reliability factor as measured by J.D. Power. The Company is committing to a 23-point improvement in its Safety & Reliability score by Year Five.</td>
</tr>
<tr>
<td>Web Satisfaction Survey</td>
<td>This metric will measure improvement in customer satisfaction with on-line tools. The Company is committing to increase this rating to 8.15 out of 10.</td>
</tr>
<tr>
<td>Digital Engagement</td>
<td>This metric will measure digital engagement with customers via self-service and alert notifications. The Company is committing to increase the ratio of digital transactions to total transactions to 85 percent.</td>
</tr>
<tr>
<td>Gas Emergency Calls - Average Speed of Answer</td>
<td>This metric will measure improvement in the average speed of answer of Gas Emergency Calls. The Company is committing to maintain 10 seconds as the average speed of answer for gas emergency calls.</td>
</tr>
<tr>
<td>New Customer Connect Gas</td>
<td>This metric will measure customer satisfaction with respect to the new gas customer interconnection process based on customer survey data. The Company is committing to maintain a satisfaction rating of 9.23 out of 10.</td>
</tr>
</tbody>
</table>

EMISSION REDUCTIONS

<table>
<thead>
<tr>
<th>Scorecard Metric</th>
<th>High-Level Summary Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Emissions</td>
<td>This metric will measure progress in emission reductions, in metric tons, associated with replacement of aged distribution infrastructure through the GSEP program. The Company is committing to reduce methane emissions by 39 percent from the baseline by Year Five of the PBR plan.</td>
</tr>
<tr>
<td>Grade 3 Environmentally Significant Leaks</td>
<td>This metric will measure the repair of environmentally significant Grade 3 leaks within 12 months of designation. The Company is committing to repair all non-GSEP environmentally significant Grade 3 leaks within 12 months of designation, which exceeds the Department’s regulations.</td>
</tr>
</tbody>
</table>
Q. Is the Company proposing any incentives or penalties with respect to the scorecard metrics it is proposing in this case?

A. No, the Company is not proposing any incentives or penalties with respect to the scorecard metrics it is proposing in this case. The Company is already subject to the Department’s rigorous SQ Guidelines, which include penalty metrics. The Department’s SQ Guidelines will apply during the period of the PBR Plan.

Q. Ms. Conner, which scorecard metrics will you be discussing as part of your testimony?

A. I will be discussing the proposed customer engagement and satisfaction metrics as part of my testimony. Company Witnesses Akley and Horton discuss the safety and reliability and emissions reduction metrics as part of their joint testimony.

Q. What are the scorecard metrics the Company is proposing in the area of Customer Satisfaction & Engagement?

A. The Department has long recognized the importance of customer satisfaction and its direct alignment with customer interests. NSTAR Electric Co. and Western Massachusetts Electric Co.; D.P.U. 17-05, at 408, 409 n. 197 (2017); Revised Service Quality Guidelines, D.P.U. 12-120-D at 56 (2015); Grid Modernization, D.P.U. 12-76-B at 33 (2014); Western Massachusetts Electric Co., D.P.U. 10-70, at 104 (2011); Boston Gas National Grid and Colonial Gas National Grid, D.P.U. 10-55, at 253-254 (2010). The Company is proposing five scorecard metrics focused on customer satisfaction and engagement: (1) a metric that measures the Company’s J.D. Power score for Safety and Reliability (2) a metric that measures customer satisfaction with
the Company’s on-line tools; (3) a measure of digital engagement with customers; (4) a metric that measures the average speed at which gas emergency calls are answered; and (5) a metric that measures customer satisfaction relative to the Company’s performance on new service interconnections.

Q. What is the basis for establishing targets for 2024?

A. The targets and specific basis for the five metrics are identified below. Generally, the targets are a function of improvement over historic performance and utilize a logarithmic curve model or experiential results. Achieving the targeted results will require the implementation of the initiatives described throughout my testimony. Each of the five Customer Engagement and Satisfaction metrics currently have a high level of performance that influences the magnitude of expected future gains. This is particularly true given the changing customer demographics and expectations (regarding millennials, youth) described earlier in my testimony. In our experience, and that of J.D. Power regarding their research on customer satisfaction, high performing measures experience a “ceiling effect.” A logarithmic curve fit was used to set the targets since it depicts the relationship of diminishing improvements as a metric approaches its ceiling.

Q. Please describe the scorecard metric that is based on J.D. Power performance.

A. The Company is proposing a scorecard metric based on Eversource Energy’s performance on the Safety & Reliability factor in J.D. Power’s Gas Utility Residential Customer Satisfaction Study. J.D. Power is widely recognized as the authority on
measuring customer satisfaction and engagement across a broad range of industries, including the gas distribution industry.

J.D. Power has conducted its Gas Utility Residential Customer Satisfaction Study for 18 years running and its results are based on responses from online interviews with residential customers of the 84 largest gas utility brands (including Eversource Energy) across the United States, which represent more than 62 million households. The Gas Utility Residential Customer Satisfaction Index segments the customer experience into six factors, one of which is Safety and Reliability.11

J.D. Power uses a customer satisfaction “index” to determine the relative rankings of gas utility companies. Based on data obtained from its surveys, J.D. Power creates an “index” that quantifies the impact that the factors and the attributes within them have on customer satisfaction. The index is a calculated roll-up of performance scores, weighted relative to the importance of each factor to overall satisfaction. Those calculations are used to derive an overall customer satisfaction score for each utility company in the study.

Q. **How does the Company propose to measure the J.D. Power metric?**

A. The Company will use Eversource Energy’s scores for the Safety and Reliability factor

in J.D. Power’s Gas Utility Residential Customer Satisfaction Study to measure its
performance under this metric.

Q. **How did the Company establish the baseline measure for the J.D. Power metric?**

A. The baseline measure for this metric is Eversource Energy’s 2018 year-end score for
the Safety and Reliability factor in J.D. Power’s Gas Utility Residential Customer
Satisfaction Index.

Q. **What target does the Company propose for the J.D. Power metric and what steps
will it take to achieve that target?**

A. Using Eversource Energy’s 2018 J.D. Power Safety and Reliability score of 775 as a
baseline, the Company will target achieving a 23-point increase to achieve a score of
798 by the end of the five-year PBR Plan term. The Company plans to achieve this
improvement by focusing on Company initiatives having the greatest relative impact
on Safety and Reliability. To determine this target, logarithmic modeling was used to
provide projected 2024 year-end results.

Q. **Please describe the scorecard metric that is designed to measure web satisfaction.**

A. As discussed in this testimony, a primary interface between the Company and its
customers is the Eversource.com website, and about 90 percent of those visits are to
view and pay utility bills. Given the importance of this customer channel, the Company
proposes to measure customer satisfaction with the online tools available on the
Eversource.com website.
In the first quarter of 2018, Eversource Energy implemented a function on its website where customers are invited to participate in a survey about their experience at the conclusion of their transaction. As part of the survey, customers rate their satisfaction with the Eversource.com website on a scale of one to ten. The Company proposes to use the average scores from these customer ratings to measure web satisfaction.

Q. How did the Company establish the baseline measure for the web satisfaction and what is the Company proposing for a performance target?

A. The baseline measure for the web satisfaction metric is 7.76 out of 10, which is based on 2018 data of customer ratings for web satisfaction. The Company proposes to set a web satisfaction rating of 8.15 as its performance target over the five-year PBR Plan term. To determine this target, logarithmic modeling was used to provide projected 2024 year-end results.

Q. Please describe the scorecard metric that is based on Digital Engagement.

A. In the past, the primary channels for customers to interact with their gas and electric companies were telephone, paper, fax, and in-person transactions. However, as discussed in this testimony, a growing population of the customer base prefers digital channels. This preference is driven, in part, by transactional experiences that consumers have with service providers in other industries such as Amazon, Uber, American Express, and Netflix. In other words, customer-service expectations are being set outside of the gas and electric utility industries.
Today’s digital consumer wants the same experience in every transaction with service providers, and they want that experience to be intuitive, personalized, and fast. Consequently, customer satisfaction in the utility space is more closely linked to the availability of digital tools and electronic engagement channels.

For Eversource Energy, the voice of the customer is and will continue to be a key driver of the customer experience transformation. To adapt to evolving customer expectations, we have taken major steps to improve the digital and self-service customer experience; to implement a dynamic and robust outage and billing and payment alert system; to launch the first mobile app, and to pursue a Fee Free credit/debit card payment options for customers in D.P.U. 19-71. This proposed metric will measure digital engagement with customers through self-service channels and alert notifications.

Q. How does the Company propose to measure the digital engagement metric?
A. For this metric, the Company will provide the Department with data on the number of “digital transactions,” as a percentage of total transactions that are processed through the Company’s digital platforms in each year of the five-year PBR Plan. A digital transaction is defined as web interactions, Interactive Voice Response, or IVR, interactions, alerts delivered, mobile application interactions and two-way text interactions.
Q. How did the Company establish the baseline measure for the digital engagement metric and what target does the Company propose?

A. The baseline for the digital engagement metric is 83.2 percent based on the number of “digital transactions,” as a percentage of total transactions, in 2018. Given the Company’s high-level of performance on this metric in 2018, it is appropriate to set a minimum performance target of 85 percent for the digital engagement metric over the five-year PBR Plan term. To determine this target, logarithmic modeling was used to provide projected 2024 year-end results.

Q. Please describe the scorecard metric that is designed to measure performance on gas emergency calls.

A. This metric is designed to measure the Company’s call response time to gas leak, odor and emergency calls generated by the public and non-Company personnel. As the response time lengthens for this initial customer contact, there is an increased potential of an incident or safety threat to the public. Therefore, it is important to minimize the average speed of answer to gas leaks or odors calls.

Q. How does the Company propose to measure the gas emergency call metric?

A. The gas emergency call metric measures the time, in seconds, for an Eversource Energy customer service representative to answer a customer call to report a gas leak, odor or other emergency.
Q. How did the Company establish the baseline measure for the gas emergency call handling metric and what target does the Company propose?

A. The 10-second target proposed for this metric is based on the three-year average (2016 to 2018). Given the Company’s exceptional performance, and the targets set by industry peers (10 – 15 seconds), it is appropriate to use the 10 second baseline as a minimum performance target over the five-year PBR Plan term.

Q. Please describe the scorecard metric the Company is proposing for new customer connections?

A. The Company invites new gas customers to complete a survey regarding their satisfaction with the Company’s performance on new service installations. This survey allows customers to rate the Company’s performance on a scale of one to ten and this metric would be based on the average score in these customer ratings.

Q. How did the Company establish the baseline measure for the customer connections metric and what is the Company proposing for a performance target?

A. The baseline measure of 9.23 out of 10 for this metric is based on the three-year average (2016 to 2018) customer rating in the new customer connect survey. Because the Company is already performing at such a high-level, only 0.77 points from a perfect score of 10, it is appropriate to use the baseline as a minimum performance target over the five-year PBR Plan term.

VI. CONCLUSION

Q. Does this conclude your testimony?

A. Yes, it does.
<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Project Planning and Stakeholder Engagement</td>
</tr>
<tr>
<td>2</td>
<td>Marketing and Customer Acquisition</td>
</tr>
<tr>
<td>3</td>
<td>Zoning and Entitlement</td>
</tr>
<tr>
<td>4</td>
<td>Engineer and Contractor Selection</td>
</tr>
<tr>
<td>5</td>
<td>Technical Design</td>
</tr>
<tr>
<td>6</td>
<td>Ground Loop and Pumping Station Construction</td>
</tr>
<tr>
<td>7</td>
<td>Performance Monitoring Engineer and Contractor Selection</td>
</tr>
<tr>
<td>8</td>
<td>Testing and Commission</td>
</tr>
<tr>
<td>9</td>
<td>Customer HVAC Installation / Retrofit</td>
</tr>
<tr>
<td>10</td>
<td>Data Collection / M&V</td>
</tr>
<tr>
<td>11</td>
<td>Eversource Direct Oversight</td>
</tr>
<tr>
<td>12</td>
<td>Interim Findings Report Issued</td>
</tr>
<tr>
<td>13</td>
<td>Final Report Issued</td>
</tr>
<tr>
<td>ID</td>
<td>Task Name</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Project Planning and Stakeholder Engagement</td>
</tr>
<tr>
<td>2</td>
<td>Marketing and Customer Acquisition</td>
</tr>
<tr>
<td>3</td>
<td>Zoning and Entitlement</td>
</tr>
<tr>
<td>4</td>
<td>Engineer and Contractor Selection</td>
</tr>
<tr>
<td>5</td>
<td>Technical Design</td>
</tr>
<tr>
<td>6</td>
<td>Ground Loop and Pumping Station Construction</td>
</tr>
<tr>
<td>7</td>
<td>Performance Monitoring Engineer and Contractor Selection</td>
</tr>
<tr>
<td>8</td>
<td>Testing and Commissioning</td>
</tr>
<tr>
<td>9</td>
<td>Customer HVAC Installation / Retrofit</td>
</tr>
<tr>
<td>10</td>
<td>Data Collection / M&V</td>
</tr>
<tr>
<td>11</td>
<td>Eversource Direct Oversight</td>
</tr>
<tr>
<td>12</td>
<td>Interim Findings Report Issued</td>
</tr>
<tr>
<td>13</td>
<td>Final Report Issued</td>
</tr>
<tr>
<td>ID</td>
<td>Task Name</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Project Planning and Stakeholder Engagement</td>
</tr>
<tr>
<td>2</td>
<td>Marketing and Customer Acquisition</td>
</tr>
<tr>
<td>3</td>
<td>Zoning and Entitlement</td>
</tr>
<tr>
<td>4</td>
<td>Engineer and Contractor Selection</td>
</tr>
<tr>
<td>5</td>
<td>Technical Design</td>
</tr>
<tr>
<td>6</td>
<td>Ground Loop and Pumping Station Construction</td>
</tr>
<tr>
<td>7</td>
<td>Performance Monitoring Engineer and Contractor Selection</td>
</tr>
<tr>
<td>8</td>
<td>Testing and Commissioning</td>
</tr>
<tr>
<td>9</td>
<td>Customer HVAC Installation / Retrofit</td>
</tr>
<tr>
<td>10</td>
<td>Data Collection / M&R</td>
</tr>
<tr>
<td>11</td>
<td>Eversource Direct Oversight</td>
</tr>
<tr>
<td>12</td>
<td>Interim Findings Report Issued</td>
</tr>
<tr>
<td>13</td>
<td>Final Report Issued</td>
</tr>
</tbody>
</table>
Overall Program Cost:

$12,810,645

Cost By Component

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$10,179,000</td>
</tr>
<tr>
<td>Direct Staff & OH</td>
<td>$1,073,311</td>
</tr>
<tr>
<td>O&M Expense, Energy</td>
<td>$536,734</td>
</tr>
<tr>
<td>O&M Expense, Maintenance / Performance Monitoring</td>
<td>$721,600</td>
</tr>
<tr>
<td>Third-Party Evaluation</td>
<td>$300,000</td>
</tr>
<tr>
<td>Total Project Cost</td>
<td>$12,810,645</td>
</tr>
</tbody>
</table>

Cost By Site

Site #1:

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$1,692,000</td>
</tr>
<tr>
<td>Direct Staff & OH</td>
<td>$165,125</td>
</tr>
<tr>
<td>O&M Expense, Energy</td>
<td>$82,714</td>
</tr>
<tr>
<td>O&M Expense, Maintenance / Performance Monitoring</td>
<td>$111,015</td>
</tr>
<tr>
<td>Site #1 Total</td>
<td>$2,050,854</td>
</tr>
</tbody>
</table>

Site #2:

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$7,506,000</td>
</tr>
<tr>
<td>Direct Staff & OH</td>
<td>$825,624</td>
</tr>
<tr>
<td>O&M Expense, Energy</td>
<td>$412,482</td>
</tr>
<tr>
<td>O&M Expense, Maintenance / Performance Monitoring</td>
<td>$555,077</td>
</tr>
<tr>
<td>Site #2 Total</td>
<td>$9,299,182</td>
</tr>
</tbody>
</table>

Site #3:

<table>
<thead>
<tr>
<th>Cost Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Cost</td>
<td>$981,000</td>
</tr>
<tr>
<td>Direct Staff & OH</td>
<td>$82,562</td>
</tr>
<tr>
<td>O&M Expense, Energy</td>
<td>$41,538</td>
</tr>
<tr>
<td>O&M Expense, Maintenance / Performance Monitoring</td>
<td>$55,508</td>
</tr>
<tr>
<td>Site #3 Total</td>
<td>$1,160,608</td>
</tr>
</tbody>
</table>

All Sites, Total:

$12,510,645
Site 1: Low-Income Multifamily

- **30 HVAC units**
- **2 tons/unit**
- **60 tons overall**
- **75 ton well capacity (NB: 25% capacity for heat of compression)**

Ground Loop:
- **75 tons**
- **$5,000/ton**
 - **$375,000**

Pumps, Boiler and Supp Clg:
- **15.17 pump power needed (calc's under “Electricity Consumption” tab)**
- **10 HP pumps purchased**
- **3 quantity purchased (N+1 redundancy)**
 - **$25,000** assumed pump cost
 - **$75,000** pump cost
 - **$50,000** boiler cost
 - **$50,000** dry cooler cost
 - **$175,000**

Piping and Specialties:
- **75 tons**
- **$1,000/ton**
 - **$75,000**

Controls:
- **75 points**
- **$1,000/point**
 - **$75,000**

Enclosure:
- **$50,000** cost

Site HVAC Costs:
- **60 tons**
 - **$6,000/ton, GSHP**
 - **$4,000/ton, internal distribution**
 - **$1,000 Building weatherization (i.e. customer costs after EE incentive funds)**
 - **$660,000**

Other Costs:
- **$1,410,000** subtotal
 - **10% Design fees**
 - **10% Contingency / scope increases**
 - **$282,000**

Site 1 Total Costs: **$1,692,000**
Site 2: Dense Urban Installation

- 100 HVAC units
- 3 tons/unit
- 300 tons overall
- 375 ton well capacity (NB: 25% capacity for heat of compression)

Ground Loop:
- 375 tons
- $5,000/ton
- **$1,875,000**

Pumps, Boiler and CT:
- 75.83 pump power needed (calc's under "Electricity Consumption" tab)
- 40 HP pumps purchased
- 3 quantity purchased (N+1 redundancy)
- $60,000 assumed pump cost
- $180,000 pump cost
- $150,000 boiler cost
- $150,000 dry cooler cost
- **$480,000**

Piping and Specialties:
- 375 tons
- $1,000 per ton
- **$375,000**

Controls:
- 75 points
- $1,000/point
- **$75,000**

Enclosure:
- **$150,000** assumed cost

Site HVAC Costs:
- 300 tons
- $6,000 per ton, GSHP
- $4,000 per ton, internal distribution
- $1,000 Building weatherization (i.e. customer costs after EE incentive funds)
- **$3,300,000**

Other Costs:
- $6,255,000 subtotal
- 10% Design fees
- 10% Contingency / scope increases
- **$1,251,000**

Site 2 Total Costs: **$7,506,000**
Site 3: Residential Community Development

- **10 HVAC units**
- **3 tons/unit**
- **30 tons overall**
- **37.5 ton well capacity (NB: 25% capacity for heat of compression)**

Ground Loop:

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>38 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$5,000 /ton</td>
<td></td>
<td>$187,500</td>
</tr>
</tbody>
</table>

Pumps, Boiler and CT:

- **7.58 pump power needed** (calc's under "Electricity Consumption" tab)
- **5 HP pumps purchased**
- **3 quantity purchased (N+1 redundancy)**

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$12,500 assumed pump cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$37,500 pump cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$50,000 boiler cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$50,000 dry cooler cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$137,500</td>
</tr>
</tbody>
</table>

Piping and Specialties:

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37.5 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1,000 per ton</td>
<td></td>
<td>$37,500</td>
</tr>
</tbody>
</table>

Controls:

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>75 points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1,000 /point</td>
<td></td>
<td>$75,000</td>
</tr>
</tbody>
</table>

Enclosure:

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$50,000 assumed cost</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Site HVAC Costs:

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>30 tons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$6,000 per ton, GSHP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$4,000 per ton, internal distribution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1,000 Building weatherization (i.e. customer costs after EE incentive funds)</td>
<td></td>
<td>$330,000</td>
</tr>
</tbody>
</table>

Other Costs:

| Description | Amount | Cost
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$817,500 subtotal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Design fees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Contingency / scope increases</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$163,500</td>
</tr>
</tbody>
</table>

Site 3 Total Costs: $981,000
Direct Staff/FTE and Overhead Expenses

Project Revenue

<table>
<thead>
<tr>
<th>Project Name</th>
<th>Units</th>
<th>Access Fee (per unit per quarter)</th>
<th>2020 - Q1</th>
<th>2020 - Q2</th>
<th>2020 - Q3</th>
<th>2020 - Q4</th>
<th>2021 - Q1</th>
<th>2021 - Q2</th>
<th>2021 - Q3</th>
<th>2021 - Q4</th>
<th>2022 - Q1</th>
<th>2022 - Q2</th>
<th>2022 - Q3</th>
<th>2022 - Q4</th>
<th>2023 - Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Income Multi-Family</td>
<td>30</td>
<td>$15 na</td>
<td>$450</td>
</tr>
<tr>
<td>Dense Urban High-Rise</td>
<td>100</td>
<td>$60 na</td>
<td>$6,000</td>
</tr>
<tr>
<td>Residential Development</td>
<td>10</td>
<td>$60 na</td>
<td>$600</td>
</tr>
<tr>
<td>Total Project Revenue</td>
<td></td>
<td>na na</td>
<td>$ 7,050</td>
</tr>
</tbody>
</table>

Eversource Project Management Expenses

<table>
<thead>
<tr>
<th>Role</th>
<th>Employee</th>
<th>Hourly Rate (incl OH)</th>
<th>Percent of Time to Project</th>
<th>2020 - Q1</th>
<th>2020 - Q2</th>
<th>2020 - Q3</th>
<th>2020 - Q4</th>
<th>2021 - Q1</th>
<th>2021 - Q2</th>
<th>2021 - Q3</th>
<th>2021 - Q4</th>
<th>2022 - Q1</th>
<th>2022 - Q2</th>
<th>2022 - Q3</th>
<th>2022 - Q4</th>
<th>2023 - Q1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Oversight</td>
<td>Project Manager</td>
<td>$44,166</td>
<td>100%</td>
<td>$44,166</td>
</tr>
<tr>
<td>Project Sponsorship</td>
<td>ES Director / VP</td>
<td>$5,000</td>
<td>100%</td>
<td>$5,000</td>
</tr>
<tr>
<td>Misc Expenses (Travel, Mileage)</td>
<td>na na</td>
<td>$7,800</td>
<td></td>
<td>$7,800</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td></td>
<td></td>
<td>$155,690</td>
</tr>
<tr>
<td>Escalation (3%/yr)</td>
<td></td>
<td>$1,155</td>
<td></td>
<td>$2,319</td>
<td>$3,491</td>
<td>$4,673</td>
<td>$5,862</td>
<td>$7,061</td>
<td>$8,269</td>
<td>$9,481</td>
<td>$10,731</td>
<td>$11,946</td>
<td>$13,190</td>
<td>$14,443</td>
<td>$15,705</td>
<td></td>
</tr>
<tr>
<td>Total Expenses</td>
<td></td>
<td></td>
<td></td>
<td>$156,845</td>
<td>$158,099</td>
<td>$159,181</td>
<td>$160,363</td>
<td>$161,552</td>
<td>$162,751</td>
<td>$163,959</td>
<td>$165,175</td>
<td>$166,401</td>
<td>$167,636</td>
<td>$168,880</td>
<td>$170,133</td>
<td>$171,395</td>
</tr>
</tbody>
</table>

Notes:

1. Monthly labor expenses based upon (40 hours per week) x (4.33 weeks per mo.) x (3 months per quarter) x (Hourly Rate) x (Percent of Time to Project)
2. Travel, phone expenses: Assume $200/week x (4.33 weeks per mo.) x (3 months per quarter) x (3 FTE)

September 24, 2019 - v1
Electricity Consumption Cost

<table>
<thead>
<tr>
<th>Grand Total (3 Sites):</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,325,269 kWh</td>
</tr>
<tr>
<td>$0.162 /kWh</td>
</tr>
<tr>
<td>$214,694 /yr</td>
</tr>
<tr>
<td>2.5 yrs operation</td>
</tr>
<tr>
<td>Total: $536,734</td>
</tr>
</tbody>
</table>

Site 1: Low-Income Multifamily

Total: 204,232 kWh

<table>
<thead>
<tr>
<th>Pumps</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 indoor HVAC unit</td>
</tr>
<tr>
<td>2 tons/unit</td>
</tr>
<tr>
<td>75 ton well capacity (NB: 25% capacity for heat of compression)</td>
</tr>
<tr>
<td>180 GPM (at 10°F dT)</td>
</tr>
<tr>
<td>15.2 HP (operating HP assuming 150' head, 50% pump eff, 90% motor eff)</td>
</tr>
<tr>
<td>8000 full-load run hours</td>
</tr>
<tr>
<td>90,516 kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Electric Boiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 full-load run hours</td>
</tr>
<tr>
<td>180 GPM loop flow (from above)</td>
</tr>
<tr>
<td>20 °F temperature rise (assumed)</td>
</tr>
<tr>
<td>95% efficiency (assumed)</td>
</tr>
<tr>
<td>555 kW out</td>
</tr>
<tr>
<td>111,031 kWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dry Cooler</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 full-load run hours</td>
</tr>
<tr>
<td>180 GPM loop flow (from above)</td>
</tr>
<tr>
<td>6 Dry cooler # of fans</td>
</tr>
<tr>
<td>1.5 HP per fan</td>
</tr>
<tr>
<td>9 HP total</td>
</tr>
<tr>
<td>5.37 kW total (assuming 80% of fan nameplate power)</td>
</tr>
<tr>
<td>2,686 kWh</td>
</tr>
</tbody>
</table>
Site 2: Dense Urban Environment

Total: 1,018,474

Pumps
- 100 indoor HVAC unit
- 3 tons/unit
- 375 ton well capacity (NB: 25% capacity for heat of compression)
- 900 GPM (at 10°F dT)
- 75.8 HP (operating HP assuming 150' head, 50% pump eff, 90% motor eff)
- 8000 full-load run hours

452,578 kWh

Electric Boiler
- 200 full-load run hours
- 900 GPM loop flow (from above)
- 20 °F temperature rise (assumed)
- 95% efficiency (assumed)

2,776 kW out

555,153 kWh

Dry Cooler
- 500 full-load run hours
- 900 GPM loop flow (from above)
- 24 Dry cooler # of fans
- 1.5 HP per fan
- 36 HP total

21.48 kW total (assuming 80% of fan nameplate power)

10,742 kWh

Site 3: Residential Community Development

Total: 102,564

Pumps
- 10 indoor HVAC unit
- 3 tons/unit
- 37.5 ton well capacity (NB: 25% capacity for heat of compression)
- 90 GPM (at 10°F dT)
- 7.6 HP (operating HP assuming 150' head, 50% pump eff, 90% motor eff)
- 8000 full-load run hours

45,258 kWh

Electric Boiler
- 200 full-load run hours
- 90 GPM loop flow (from above)
- 20 °F temperature rise (assumed)
- 95% efficiency (assumed)

278 kW out

55,515 kWh

Dry Cooler
- 500 full-load run hours
- 90 GPM loop flow (from above)
- 4 Dry cooler # of fans
- 1.5 HP per fan
- 6 HP total

3.58 kW total (assuming 80% of fan nameplate power)

1,790 kWh
Performance Monitoring and O&M Expenses

<table>
<thead>
<tr>
<th>Total Performance Monitoring / O&M:</th>
<th>$721,600</th>
</tr>
</thead>
</table>

Performance Monitoring / Data Collection Expense

<table>
<thead>
<tr>
<th># data reads / month:</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours / data read & log:</td>
<td>30</td>
</tr>
<tr>
<td>Labor cost:</td>
<td>$150 /hr (typical fully-loaded cost for senior engineering consultant)</td>
</tr>
<tr>
<td></td>
<td>$4,500 /month</td>
</tr>
<tr>
<td>Months of data collection:</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>$108,000</td>
</tr>
<tr>
<td>Reports:</td>
<td>2</td>
</tr>
<tr>
<td>Hours per report:</td>
<td>200</td>
</tr>
<tr>
<td>Labor cost:</td>
<td>$150 /hr</td>
</tr>
<tr>
<td></td>
<td>$60,000</td>
</tr>
<tr>
<td>Subtotal:</td>
<td>$168,000</td>
</tr>
<tr>
<td>Other expenses:</td>
<td>20% of contract (travel, meetings, printing, etc.)</td>
</tr>
<tr>
<td></td>
<td>$33,600</td>
</tr>
<tr>
<td>Total:</td>
<td>$201,600</td>
</tr>
</tbody>
</table>

O&M Expense

<table>
<thead>
<tr>
<th>Operator hours/week:</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor cost:</td>
<td>$250 /hr (boiler operator & replacement parts)</td>
</tr>
<tr>
<td>weeks of operation:</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>$260,000</td>
</tr>
<tr>
<td>Material cost:</td>
<td>$260,000 Assume equal to labor cost</td>
</tr>
<tr>
<td>Total:</td>
<td>$520,000</td>
</tr>
</tbody>
</table>
DIRECT WRITTEN TESTIMONY OF

Julia Frayer
Marie Fagan

Exhibit ES-JF/MF-1

London Economics International LLC
717 Atlantic Avenue, Suite 1A
Boston, MA 02111

November 8, 2019
TABLE OF CONTENTS

I. INTRODUCTION .. 1

II. INTRODUCTION TO PBR FOR LDCs ... 10

III. SUMMARY OF X FACTOR RECOMMENDATION ... 18

IV. SUMMARY OF TOTAL COST BENCHMARKING STUDY 35

V. IMPLICATIONS FOR THE COMPANY’S REVENUE CAP PER CUSTOMER PROPOSAL .. 43
I. INTRODUCTION

Q. Please state your name and business address.

A. My name is Julia Frayer. I am one of the partners and a Managing Director of London Economics International LLC (“LEI”), a Massachusetts-based consulting firm specializing in the energy, water, and other infrastructure industries. My business address is 717 Atlantic Avenue, Suite 1A, Boston, MA 02111.

Q. What is the purpose of your testimony in this proceeding?

A. I was retained by NSTAR Gas Company d/b/a Eversource Energy (“NSTAR Gas” or the “Company”) to provide expert technical analysis for its performance-based ratemaking (“PBR”) plan. More specifically, I am presenting a total factor productivity (“TFP”) study as the basis for the X factor that NSTAR Gas should use for its “I-X” rate escalation mechanism. In addition, I am presenting the results of a Total Cost Benchmarking Study, which estimates the Company’s efficiency level relative to its peers.

Q. Please summarize your relevant professional background.

A. As Managing Director of LEI, I supervise and manage many of LEI's engagements involving market analysis in the electricity sector, including
advisory services on regulation and tariff design, as well as consulting related to commercial activities in deregulated power markets. I have worked extensively in the United States, Canada, Europe, and Asia for more than 20 years in valuing electricity generation and wires assets, water and wastewater networks, as well as gas transportation assets, and in advising on regulatory reforms, development of competitive market rules, innovative rate design, and institutional best practices for the electric and gas utility sectors.

PBR is an area that I have specialized in with respect to regulatory design. I have extensively studied regulatory regimes involving PBR and advised utilities, regulators, and investors on best practices with respect to the design of PBR formula and implementation. In some of my work, I have advised on how PBR implementation may affect consumers, while in other engagements, I have focused on implications for regulated utilities and regulators. That work has exposed me to various forms of PBR and the technical studies that regulators and utilities use to calibrate the trajectory of future rates, consider investment needs and align the incentives of customers, the regulated utility, and the regulator. Such engagements have occurred in North America (U.S. and Canada), Europe (for example,
Austria, Germany, the Netherlands, and the United Kingdom), Asia
(Malaysia), and South America (Argentina). I have also conducted
workshops for regulators and industry stakeholders on PBR.

I am very familiar with the evaluation of productivity trends and the
development of TFP studies. I have examined TFP trends in electric
transmission, distribution, and generation sectors, as well as water and
wastewater networks. I have also studied productivity matters as
applicable to gas distribution. My work in PBR straddles various
regulatory models. I have advised on the formulaic approach of an “I-X”
application and have studied the building-blocks approach historically
applied in the United Kingdom and Australia.¹ A few years ago, I headed
a team that assisted the largest Southeast Asian utility, Tenaga Nasional
Berhad, in the preparation of their first comprehensive PBR application.

I have also testified before a number of regulators on various aspects of rate
design broadly, and PBR specifically, as discussed further below. My

¹ A “building blocks” approach is a framework where revenue requirements are “built up”
based on the utilities’ future estimated efficient costs and return of and return on an efficient asset
base.
Q. Where have you testified on PBR matters?

A. In recent years, I have served as an expert witness in a number of Canadian jurisdictions that have applied PBR to regulated electric and gas utilities. Most recently, I have testified before the Ontario Energy Board (“OEB” or “the Board”) on behalf of the Ontario Power Generation (“OPG”) presenting LEI’s TFP study for OPG’s first generation Incentive Regulation Mechanism plan for its regulated hydroelectric fleet. I am currently working with OPG on their next-generation rate application. I have also appeared before the OEB on behalf of Enbridge Gas regarding its second-generation Customized Incentive Regulation plan for 2014-2018. In this testimony, I set out the underlying theory and practical experience of using the building blocks approach in incentive regulation regimes and compared it with the OEB’s Custom IR approach. Furthermore, in 2008, I advised the Coalition of Large Distributors in Ontario on the 3rd generation Incentive Regulation Mechanism proceedings before the OEB.

I also provided expert testimony in support of FortisAlberta Inc. in its first filing for a PBR plan with the Alberta Utilities Commission. That testimony...
provided a detailed analysis (including recommendations on inflation and TFP trends), summarized the underpinning economic theory for PBR, and reviewed best practices in various North American and international jurisdictions. Furthermore, I prepared a white paper for the Canadian Electricity Association, describing the basic principles of PBR and analyzing the state of incentive ratemaking and PBR implementation across Canada.

Q. Do you have other experience relevant to this project?

A. Yes, I have participated in several other engagements relevant to the expertise required in this project. I am also knowledgeable about the natural gas local distribution company (“LDC”) sector in New England, as well as across North America, and I am familiar with Massachusetts energy policies. Many of my recent engagements with respect to electric power and wholesale market rules development required an in-depth understanding of gas dynamics in the region, including the planning and operational issues prevalent for New England’s LDCs. I have also worked with the Maine Public Utilities Commission on the new gas pipelines, which required examination of the business trends and customer dynamics for the New England LDC sector.
Further, I have studied, on behalf of state regulators, the economics of energy efficiency programs, some of which specifically target the gas sector. Also, as mentioned above, in Ontario, I have worked with Enbridge Gas and Union Gas on their PBR plans, planned investments, and customer growth strategies. Over the last several years, I have had the opportunity to work with many of the diverse entities involved in the Massachusetts energy sector, including generators and electricity transmission and distribution firms. The diversity of past clients and their perspectives gave me an in-depth and unique appreciation of policy issues in Massachusetts.

Lastly, I have testified on a variety of issues before U.S. state and Canadian provincial regulators, as well as the Federal Energy Regulatory Commission (“FERC”) in the U.S. I have also served as an expert in litigation and arbitration proceedings.

Q. Have you testified previously before the Massachusetts Department of Public Utilities (“Department”)?

A. Yes, I have testified before the Department and associated state agencies, such as the Energy Facilities Siting Board (“EFSB”). I have led a number of engagements with Eversource Energy and National Grid, jointly and separately, to determine the technical and economic viability of non-transmission alternatives. For example, I provided testimony to the EFSB
for the following electric transmission projects: Greater Springfield Reliability Project (2010); Merrimack Valley Reliability Project (2015); Mystic to Woburn Project (2015 to 2016); Wakefield – Woburn (2015 to 2016); and Sudbury-Hudson (mainly 2017, but the project began in late 2016 and continued through 2018).

Q. Are you sponsoring any exhibits in conjunction with your testimony?

Q. How is your testimony organized?
A. This testimony is organized into five sections. In this section, I briefly review our expertise and experience relevant to this engagement and the purpose of this testimony. The next section provides an introduction to PBR, including the benefits of PBR for consumers and the regulated utility. I also describe and comment on the Company’s specific PBR plan. The third section presents a summary of my findings and recommendations stemming from LEI’s Industry TFP Study. The fourth section summarizes the results of LEI’s Total Cost Benchmarking Study for the Company and its peers. The last section, Section 5, discusses the implications of these two
analyses for the NSTAR Gas revenue cap per customer proposal in this proceeding.

Q. Dr. Fagan, please state your name, position, and business address.
A. My name is Dr. Marie N. Fagan. I am a Managing Consultant and Lead Economist at LEI. My business address is 717 Atlantic Avenue, Suite 1A, Boston, MA 02111.

Q. What is the purpose of your testimony in this proceeding?
A. I worked with Julia Frayer on the Total Cost Benchmarking Study, which estimates the Company’s efficiency level relative to its peers.

Q. Please summarize your relevant professional background.
A. As Managing Consultant and Lead Economist, I lead LEI’s engagements related to oil and natural gas analysis. I direct LEI’s gas pipeline modeling efforts and support LEI’s outlook for natural gas prices and basis forecasts for different hubs across North America. I have served as an expert witness on issues such as basis differentials, pipeline capacity, gas utilization in key regions, and LNG imports and export supply and demand.

I have over 25 years of experience in research and consulting for the energy sector, and my career has spanned international upstream and downstream

Lastly, I have deep experience in econometric analysis. I have performed economic benchmarking analysis of utility performance as well as economic analysis of oil demand.

Q. Do you have other experience relevant to this project?

A. Yes, I have conducted various econometric and benchmarking analyses. Currently, I am leading a team in performing an econometric benchmarking analysis of unit-level O&M costs for a cross-sectional data set of over 300 hydropower generation units. I also led a comprehensive study of price and income elasticities of oil demand for Columbia University’s Center on Global Energy Policy. The foundation of the study was a detailed econometric analysis that employed variety of specifications of econometric models, including static and dynamic models, symmetric
and asymmetric models, and tests of time-series properties of the data. The scope of the work encompassed separate models for crude oil, gasoline, and diesel demand, and relied on combined cross-section time-series data for OECD and non-OECD countries.

I am also very familiar with the Northeast LDC market. Recently, I led the analysis of the cost and benefits of several contracts for firm transportation service on natural gas pipelines. I also evaluated the value of firm transportation and interruptible transportation legacy contracts for a private client operating in the electric power generation business.

II. INTRODUCTION TO PBR FOR LDCs

Q. What is PBR?

A. PBR is a form of utility regulation that mimics the forces that would have been in play if there was competition, where firms compete to provide the best service at the lowest cost through efficient operations. Under PBR, a formula is used to set the trajectory for the “price” of monopoly service by reference to inflationary pressures and industry productivity trends over time (or to target profit levels), rather than to the specific costs of the regulated firm. PBR is typically implemented as an alternative to traditional cost of service (“COS”) ratemaking, where rates would change
over time with the utility’s costs. The objective of PBR is to strengthen the
financial incentive for the regulated firm to lower costs and improve
efficiency (as the price it is able to receive is set independently of its costs
for the term of the PBR regime).

The concept of PBR includes a variety of mechanisms that could be used in
varying combinations to motivate the regulated utility to be efficient. As
such, PBR is best conceptualized as a continuum, ranging from “light” to
“comprehensive” mechanisms, rather than a single type of regulatory
regime. “Light” mechanisms include relatively minor adaptations to a
traditional COS framework, such as including performance incentive
mechanisms, regulatory lags (where rates may be fixed for a period of time),
and efficiency audits and reviews. By contrast, price or revenue cap and
outcomes-based PBR are on the other end of the more “comprehensive”
forms of PBR. Figure 1 shows a diagram of this continuum.
Figure 1. Continuum on PBR regulation from “light” to “comprehensive” key mechanisms

<table>
<thead>
<tr>
<th>Light PBR</th>
<th>Comprehensive PBR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory lag/rate freeze</td>
<td>Essentially cost of service/rate of return method, with company retaining efficiency gains until next review</td>
</tr>
<tr>
<td>Rates still cost-based, but with upward and downward adjustments to reward or penalize utilities</td>
<td></td>
</tr>
<tr>
<td>Benefits utilities, if reviews not scheduled periodically</td>
<td></td>
</tr>
<tr>
<td>Incentive targets (performance standards)</td>
<td>Base ROE set for utility, earnings above/below earnings band shared with customers</td>
</tr>
<tr>
<td>Targets generally relate to service standards, efficiency gains, etc.</td>
<td></td>
</tr>
<tr>
<td>Earning sharing mechanism/ROE bands (sliding scale)</td>
<td>Prices or revenues adjust annually for inflation (minus a productivity or X factor) with company retaining savings above target</td>
</tr>
<tr>
<td>Bands may or may not be directly linked to efficiency gains</td>
<td></td>
</tr>
<tr>
<td>Price or revenue cap (RPI-X)/benchmarking</td>
<td>X factor can be utility-specific or based on industry average</td>
</tr>
<tr>
<td>Revenues earned adjusted according to utility performance according to pre-determined targets</td>
<td></td>
</tr>
<tr>
<td>Next-generation PBR (RIIO)</td>
<td>Yardstick competition + benchmarking</td>
</tr>
<tr>
<td>Revenues = Incentives + Innovation + Outputs</td>
<td></td>
</tr>
</tbody>
</table>

Note: RIIO means Revenues = Incentives + Innovation + Outputs. It is the PBR framework currently used in the United Kingdom.

PBR regimes are most likely to be successful when the regulated utility is operating in a steady-state environment, where the historical conditions and trends affecting the regulated utility and its peers in the industry are a reasonable indicator of future conditions. When the future is very different from the past, for example, the need for capital investment in the future far exceeds the typical pace of capital investment, or there is a situation where output growth in the future is different from the past, then a price or
revenue cap with an I-X escalation mechanism (under a comprehensive PBR plan) may not be adequate to ensure a viable regulatory environment for the utility. Therefore, PBR regimes need to be tailored to the expected future circumstances.

Q. What form of PBR design is the Company proposing?

A. The Company is proposing to continue with the revenue cap per customer that it has had under the Revenue Decoupling framework. Thus, the PBR framework starts with the revenue cap per customer, established based on a review of the costs of service for a historical test year.2 The Company’s PBR framework then applies a rate adjustment formula to that base revenue per customer year over year, which is based on a pre-set X factor or productivity target and an I factor or an inflation adjuster (which tracks actual inflation trends in the economy).3

The Company’s PBR plan also includes common additional PBR formula elements like a Y factor, Z factor, and earnings sharing mechanism (“ESM”).4 The Company proposes a Y factor for the recovery of

2 Exhibit ES-WJA-DPH-1.
3 Exhibit ES-WJA-DPH-1.
4 Exhibit ES-WJA-DPH-1.
incremental costs associated with two clean energy demonstration projects.5 The Y factor is a flow-through cost that is generally outside the normal business operations but can be anticipated and thus is pre-approved by the regulator. It is appropriate for the two demonstration projects to be considered under Y factor and recovered on a pass-through basis as they are costs that are expected but outside the Company’s normal business operations.

The Z factor, also known as exogenous factor, is a mechanism that allows for adjustment in revenues or rates in case of occurrence of events that are perceived as beyond the reasonable control of utility management, were neither foreseen nor foreseeable at the time a formula was set, and that have a significant impact on the utility’s finances.

The ESM is generally designed so that the extraordinary earnings (or losses) are shared amongst the LDC and its customers, rather than retained (or absorbed) entirely by the utility if formulae-driven price adjustments result in a too wide divergence between price and costs. The Company is proposing an ESM with a 100-basis point deadband above and below the allowed return of equity (“ROE”) and share the surplus/deficient earnings

5 Exhibit ES-WJA-DPH-1.
with customers outside of this deadband on a 75%-25% (customers/shareholders) basis.6

The Company is proposing a five-year term over which it would be subject to the PBR plan, but is also open to an option to stay out even longer if there is an opportunity at the end of the PBR term to update rates to reflect capital investments made since the start of the PBR term.7

Q. What are the benefits of this type of PBR design for the Company?

A. The revenue cap per customer and PBR rate-adjustment mechanism will create a strong economic incentive for the Company to manage its costs. If the Company can reduce its costs more substantially than its peers in the industry, it will be able to increase its profitability. In other words, if the Company reduces its costs at a faster pace than that which is implied by the I-X rate adjustment mechanism, it will see its net income increase. This aspect of the PBR plan mirrors the market discipline in competitive markets, where firms focus on reducing their own costs rather than trying

6 Exhibit ES-WJA-DPH-1.
7 Exhibit ES-WJA/DPH-1.
to influence prices charged to customers. The Company’s PBR plan allows
the Company to retain (some) of those incremental profits.

In addition, the PBR framework will enable the Company to manage its
own costs over the term of the PBR, including the timing, choice, and
amount of costs deployed for operating the LDC business, including
decisions regarding the mixture of capital and operating expense to achieve
intended operating outcomes. The PBR plan proposed by the Company
also provides the utility with a level of predictability as to how external
factors that have the potential to derail the PBR will be addressed. Given
that there are near-term uncertainties in Massachusetts and nationally
regarding new rules and regulations on safety and environmental factors,
in incorporating a path forward on the treatment of unknown, incremental
costs arising as a result of new rules and regulations is important to a utility
committing to an extended stay-out. This approach will allow the
Company to focus on improving its operations and servicing its customers
in light of the changing rules and regulations. The use of the revenue cap
per customer approach allows for an alignment of the regulatory
framework with state initiatives for energy efficiency.
Lastly, the reduction in regulatory burden (through a predictable, annual rate adjustment thereby avoiding intensive base rate reviews) will benefit not only the Company but also the regulator and, ultimately, consumers.

Q. **What are the benefits of a PBR plan for customers?**

A. The primary objective of a PBR plan is to motivate the regulated LDC to be efficient and reduce its costs of operation, which benefits customers over time. A revenue cap per customer will create strong incentives for NSTAR Gas management to control operating costs. This will benefit consumers, as they will know those base rate revenues will not rise above the I-X trajectory in the longer term, while the cost savings will lead to a lower rate for customers over the long-term. In the future, when the Department re-evaluates the costs of the Company and resets the base rate, the cost savings achieved by the Company as a result of PBR will yield a lower base rate than the base rate that would have otherwise been set.

As noted already, the five-year term and stay-out provision also reduce the regulatory burden on the Department and the Company, which creates cost savings that ultimately benefit customers.

The ESM provides safeguard that the PBR plan will not overcompensate the Company and that customers can share in the achievements of the
Company – even before the next full rate review - if the Company achieves a reduction in costs that materially raise profits. The ESM has some similarities with the concept of Consumer Dividend, which is essentially giving customers and shareholders contemporaneous access to the financial benefits of much lower costs that were motivated by the PBR regime.

In summary, the revenue cap per customer proposed by NSTAR Gas allows for a “win-win” situation where both customers and the Company share the benefits of a PBR plan.

III. SUMMARY OF X FACTOR RECOMMENDATION

Q. What is an Industry TFP study?

A. An Industry TFP study is used to measure the productive efficiency of an industry by assessing the total quantity of outputs that the firms in the industry produce relative to the quantity of inputs employed across all those firms. The TFP calculus should include consideration of all relevant physical inputs to production, such as labor, materials (and services), and capital. The output(s) typically reflected in a TFP analysis represent the volume of the product or service sold by firms in the industry, which may be proxied by the number of customers served by LDCs.
For purposes of PBR, and specifically in the design of price caps and revenue caps, regulators are interested in changes in TFP levels over time. For example, historical productivity growth can inform regulators and the regulated utility on the level of productivity change, to guide the choice of an explicit productivity target or X factor under an I-X rate adjustment mechanism.

Q. What methodology did you use for calculating the trend in TFP for the LDC industry?

A. LEI relied on the index method discussed in Section 2 of LEI’s Industry TFP Study. Figure 10 of LEI’s Industry TFP Study report provides an overview of some of the methods employed by practitioners for estimating TFP growth. LEI chose to use an index method because it is a relatively straightforward numerical method and is easy to explain. The index method also requires significantly fewer observations to estimate trends in TFP, as compared to other quantitative techniques. Moreover, regulators have most commonly relied on index-based studies of industry TFP trends for purposes of setting an X factor for a PBR formula.

It is important to note that the index method, because it is a numerical technique as opposed to a statistical technique, does not lend itself to statistical analyses (confidence levels or forecast error measures).
Therefore, interpreting differences in index values necessarily involves certain qualitative considerations. The Department has previously approved PBR plans using the index method and has affirmed the use of the index approach for purposes of determining TFP growth trends and ratemaking for gas and electric companies under its jurisdiction.8

In addition, LEI specifically used the chained Fischer Ideal index for calculating the trends in the TFP Study for the LDC industry.9 There are a number of alternate index number formulations that have been used by practitioners for purposes of TFP analysis, including the Laspeyres index, Paasche index, and the Törnvist index.10 However, other studies have proven that the Fischer Ideal index possesses the maximum number of desirable properties for an index number method and therefore is theoretically preferred over other index number formulations.11 That said, the results of the Industry TFP study are not very sensitive to the selected

9 Indexes are chained by comparing data for each year to the data from the year immediately preceding it (with the exception of the base year). This method provides a more accurate portrayal of year over year growth.

10 Note that the Fischer Ideal index is a geometric average of the Laspeyres and the Paasche indices.

index, because LEI focused on estimating an average trend over a 15-year timeframe rather than an average spanning just a few years.12

Q. Which firms did you include in your industry group?

A. LEI’s Industry TFP Study was constructed based on the aggregation of data from 83 U.S. LDCs. These 83 LDCs are located across 31 states and represent 70.0\% of gas customers nationally and 69.5\% of the total volume of gas sales in the U.S. in 2017. I refer to these 83 LDCs as the “Study Group.” For the Northeast Regional group, LEI’s Industry TFP Study was based on 29 LDCs located across seven states comprising the Northeast Region as used by the Bureau of Labor Statistics (“BLS”). These 29 LDCs accounted for 94\% of gas customers in the Northeast Region and 81\% of the total volume of gas sales in the Northeast Region, as of 2017.

The 83 LDCs encompass both small and large utilities, ranging from 1,200 to 2.2 million customers in 2017 (for reference, the Company had approximately 291,000 customers as of 2017), and across all regions of the U.S. For an industry TFP to be useful for PBR formula design purposes, it

12 In general, the Fisher Ideal index produces very similar results to other index formulations such as the Laspeyres index, Paasche index, and Törnqvist index. The differences are more pronounced over a short timeframe, where the weighting scheme reflected in the Fischer Ideal can produce numerically different values.
should capture the trends in productivity across all peers, not just the
historical productivity trends of the regulated firm applying for PBR
treatment. The LEI Industry TFP Study does not capture 100% of all LDCs
in the U.S. because of data limitations. However, LEI’s Study Group is
larger and more comprehensive than any other similar LDC TFP study
submitted prior to this point with state regulators across the U.S. As a
result, I have confidence that the sample of 83 LDCs (for the U.S.) and 29
LDCs (for the Northeast Region) appropriately reflect the TFP trends for
the national LDC industry and the Northeast Regional LDC industry,
respectively.

Q. You mentioned that the LEI Industry TFP Study does not capture 100%
of all LDCs in the U.S. because of data limitations. Would you explain
this further?

A. LEI aimed to include as many LDCs as possible, subject to availability of
quality data over the entire study timeframe. However, financial and
operating data for LDCs is not available in a single, centralized repository
(such as the FERC Form 1 that has data for all U.S. investor-owned electric
utilities). LDCs file their annual reports to their respective state regulators,
and public filing policies vary by state regulator. After acquiring a basic
data set, LEI expended significant additional effort, manually checking and
adding data, where readily and publicly available.

Q. Over what timeframe is the TFP growth rate calculated, and is this a valid
timeframe for purposes of ratemaking?

A. LEI’s Industry TFP Study was conducted over the timeframe of 2003 to
2017. The most recent financial and performance data available in early
2019, when LEI began its research, was calendar year 2017. By starting with
2003 financial and operating statistics, LEI has estimated a 15-year trend for
the growth rate in the LDC industry TFP. To perform the index calculations
beginning in 2003, LEI collected capital quantity data back to 1998, to build
up the capital input quantity. LEI chose 1998, as that was the year with
consistent data available for LDCs in the Industry Group.

The primary purpose of conducting an Industry TFP Study for ratemaking
purposes is to estimate an average rate of change in productivity, which is
naturally going to span multiple years. Looking over many years of data
will reduce the bias that can be caused by numerical outliers or one-off
events that affect productivity in any single set of consecutive years. At the
same time, one must be careful not to include outdated information about
productivity that is not going to be representative of current operating
dynamics and future possibilities, especially as the historical TFP growth
trends are intended to inform future rates.

Given data availability and quality (see Section 3 of LEI’s Industry TFP
Study report for further details) and best practices for TFP analysis, the 15-
year timeframe of 2003-2017 is appropriate for setting the Company’s X
factor under an I-X revenue cap per customer for the next five years, as it
provides a robust, up-to-date, and stable estimate of average industry
trends (eliminating the impact of any year-on-year outliers). Estimated
industry TFP trends from further back in time would have predated the
industry’s move towards the use of plastic mains and intense focus on leak
prevention. Older data would also not capture the slow-down in customer
growth or the policy emphasis on more efficient customer consumption.

Q. What inputs did LEI examine in its Industry TFP Study?

A. LEI constructed a two-input model consisting of quantities of capital and
quantities of non-capital inputs (based on deflated operating costs). Capital
quantities were based on an estimation of the real capital stock (capital
additions and retirements) and weighted by the implicit rental price of
capital, developed in a seminal paper by Christensen and Jorgenson (1969)\(^\text{13}\) (see Section 3.3 in LEI’s Industry TFP Study for further details).

Non-capital quantities were based on reported annual operations, maintenance, and administration (“OM&A”) expenses, including labor costs, non-labor distribution operations, and maintenance costs, storage costs, customer accounts, customer service-related operating expenses and reported administrative & general expenses. This data was taken directly from utility filings (see Section 3.3 of the LEI Industry TFP Study for a description of the data that LEI relied on to calculate the OM&A and capital inputs).

Q. Why are you referring to quantities of inputs?

A. The LEI Industry TFP Study is designed to capture the trend in physical productivity for LDCs. Because this is not a financial or accounting study, raw financial data should not be used. Instead, LEI converted raw financial data from monetary values to physical unit proxies. Price deflators were used to convert nominal monetary values into “real” dollar-denominated quantities.

Q. What output metric did LEI use in its Industry TFP Study?

A. LEI used the total number of customers served in each year using the distribution system as an output metric, including customers that may be receiving gas acquired by non-utility retail suppliers. The use of total customers served is a common practice for TFP studies for the LDC industry, as well as other network industries. An advantage of using the total number of customers as an output metric is that the number of customers is a numerical data point that is both available and consistently measured across LDCs. Gas sales, which LEI also considered as an output, are primarily driven by weather patterns that can vary considerably across the years. However, operational procedures and capital investment plans will not change in response to weather variability. Therefore, the use of gas sales as an output metric may introduce volatility in the TFP index that is not truly reflective of the industry’s physical productivity trends.

Additionally, gas utilities typically build pipeline systems to serve customers and not necessarily the specific amount of gas consumed per customer, as that is likely to change with time. Figures 17 and 18 of LEI’s Industry TFP Study show the number of customers and gas sales, as well as the corresponding growth rates.
Q. What were the key results in LEI’s Industry TFP Study?

A. The TFP for the national Study Group grew by 0.09% on average over the 2003-2017 timeframe. The TFP results are described in detail in Section 4 of LEI’s Industry TFP Study. The marginally positive TFP growth rate is the result of an increase in the quantity of inputs deployed by LDCs in the U.S., which is slightly smaller than the growth rate in outputs (number of customers served).

Capital inputs grew by 0.76% per annum on average, while non-capital (OM&A) inputs grew by 0.52% per annum on average over the 2003-2017 timeframe for the U.S. LDC industry. Capital inputs represented about 52% of the total quantity of inputs. When combining the two inputs into a composite input index, the annual average growth rate in input quantities amounted to 0.65% per annum. Output grew on average at 0.73% per annum over this same timeframe. The 0.09% average TFP growth rate suggests that over the last 15 years, the number of customers grew slightly faster than the quantity of inputs expended per customer.

Growth in the quantity of capital inputs can be attributed to network investment motivated by customer growth, replacement of aging capital, and expanding safety-related requirements (such as the new regulations
enacted by the U.S. Pipeline and Hazardous Materials Safety Administration ("PHMSA") requiring utilities to establish and implement a Distribution Integrity Management Program by August 2011.

Growth of non-capital quantity inputs can be attributed to several factors, such as support for energy policy objectives, the implementation of safety programs (e.g., leak management program) to comply with PHMSA’s requirements, and increasing labor costs.

LEI also calculated the growth in TFP for LDCs located in the Northeast Region of the U.S., which is defined by the BLS and includes the nine states of Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. The TFP growth rate for the Northeast Region is -0.39% per annum, on average, over the 2003-2017 timeframe. The negative TFP trend for the LDCs operating in the Northeast Region is attributed mainly to higher growth rates in inputs (both capital and OM&A) and slower growth in output (number of customers), as compared to the trends for the U.S. as a whole.

\[14\] As shown in Figure 16 of LEI’s Industry TFP Study, LEI included 29 LDCs in the Northeast Region, which cover all the states in the region except for Maine and Rhode Island.
Q. Are there specific factors that set the Northeast Region apart from the rest of the U.S. for purposes of assessing TFP growth for LDCs?

A. Yes. There are several potentially important factors that may impact productivity growth in the LDC sector that appear to vary materially between the Northeast Region and the rest of the U.S. LEI focused on three drivers of TFP growth: economies of scale, technology, and output growth. LDCs in the Northeast Region have, on average, smaller gas pipeline systems with fewer customers, which can affect TFP growth. In terms of technology, LDCs in the Northeast Region have greater proportion of cast (or wrought) iron mains on their systems, which may lead to a different trend in TFP over time for the Northeast Region relative to the rest of the U.S. In addition, LDCs in the Northeast Region in the aggregate have experienced slower growth in the number of customers in the past few years as compared to LDCs in the rest of the U.S. Output growth is a major component of TFP growth.

LEI examined the significance of the difference in the number of customers as of 2017 as a reference for the size of an LDC and a proxy for economies of scale. In 2017, the average number of customers per LDC outside the

Northeast Region (669,822 customers per LDC) was nearly 65% higher than the average customer count for LDCs in the Northeast Region (408,082 customers per LDC). This difference in size has been consistently observed over the last past 15 years.

LEI also considered the technology used by the LDCs in the Northeast Region versus the rest of the U.S., as proxied by the relative quantity of cast (or wrought) iron mains deployed on LDCs’ systems. LEI identified that the share of the mains made up of cast (or wrought) iron in use by LDCs in the states that make up the Northeast Region are substantially higher, compared to LDCs in other states in the continental U.S.¹⁶ For example, in 2018, states in the Northeast Region had a materially higher share of average total main miles of cast/wrought iron than the other regions in the U.S.¹⁷ This is an indication that the technology factors for LDCs in the Northeast Region are different from the other U.S. regions, and this could impact opportunities for productivity growth.

¹⁷ The Northeast states had an average of 11.0% of total main miles of cast/wrought iron versus 2.8% for non-Northeast states in 2018.
Lastly, over the past 15 years (2003-2017), the average annual growth rate in the total customers served by the LDCs in the Northeast Region lagged than the rest of the U.S. by almost 25%. In recent years (e.g., in the last 3 years of the Study timeframe (2015-2017)), the differential between average annual growth rates of the Northeast Region LDCs versus the LDCs in the rest of the Study Group has expanded to more than 40%. Slower output growth will affect TFP trends.

Based on economies of scale, technology in use, and output growth, LEI recommends a Northeast Region TFP growth rate for setting NSTAR Gas’ X factor.

Q. How should the observed industry TFP trends be used in the Company’s rate proposal?

A. LEI understands that NSTAR Gas is proposing a revenue per customer cap for a five-year term, with an I-X adjustment mechanism. The Company is proposing that the use of the TFP trend derived by LEI for LDC productivity in the Northeast Region of -0.39%, rather than the national Study Group trend of 0.09%. In either case, the TFP trend would be adjusted before it becomes the X factor, in order to align with the selected inflation factor ("I factor").
Consistent with Department precedent, the Company is proposing to use
the U.S. Gross Domestic Product Price Index ("GDP-PI") as the I factor, as
it is simple and accessible for purposes of the escalation mechanism.18

However, given that GDP-PI is an economy-wide inflation indicator,
several adjustments need to be made to the TFP trend to have an
appropriate X factor in pairing with the GDP-PI index. The X factor should
include a TFP differential and an input price differential between the LDC
industry and the U.S. economy as a whole.

The TFP differential is the difference between rates of change in the
industry TFP and TFP for the overall economy. The broadest measure of
TFP for the U.S. economy is the Bureau of Labor Statistics ("BLS")
multifactor productivity ("MFP") index for the private business sector.19
LEI used this BLS MFP index as a proxy measure of TFP trends in the U.S.
economy. The TFP trend differential over the 2003-2017 timeframe for the
Northeast Region is -0.98%. The TFP trend for the national industry, on the
other hand, is -0.51%.

18 Exhibit ES-WJA-DPH-1.

The input price differential is the difference between rates of change in input prices for the overall economy and the LDC industry. LEI used the GDP-PI and the industry input price index from the LEI Industry TFP Study to estimate the input price differential. The input price differential over this 15-year timeframe is -0.32% for the Northeast Region LDCs, and -0.28% for the national Study Group. The adjustments to the TFP trend to yield the X factor are discussed in greater detail in Section 5 of LEI’s Industry TFP Study. In total, these adjustments result in a recommended X factor of -1.30% using the Northeast Region TFP trend.20

Q. How does this recommended X factor compare with the X factor accepted by the Department for NSTAR Electric and the X factor proposed in other recent PBR plans for the LDC sector?

A. LEI’s X factor is reasonable and appropriate given the findings from several recent TFPs, including NSTAR Electric’s approved X factor. There are a number of similarities between the NSTAR Gas and NSTAR Electric revenue cap formulas. First, both the electric and gas utilities are proposing to use an index-based approach to estimate the TFP trend. Second, both the electric and gas industry TFP studies relied on a 15-year period. NSTAR Electric’s sample period is from 2001 to 2015, while the study timeframe for

20 The X factor using the national Study Group trend is -0.79%.
NSTAR Gas is from 2003 to 2017. Third, both utilities have over 60 companies reflected in the industry sample. The TFP Study for NSTAR Electric used 67 electric LDCs, while LEI used data from 83 LDCs across the U.S. Fourth, both utilities appropriately utilized the One Hoss Shay (“OHS”) approach to quantify the physical deterioration of capital inputs, as explained in Section 3.2.2 of LEI’s Industry TFP Study.

Certain differences between the TFP studies for electric distribution sector and the LDC industry are related to the data. As discussed earlier, TFP studies for the electric distribution industry in the United States can utilize data from a single source (FERC Form 1), unlike the LDCs. Given the differences among state requirements, it is not surprising that LEI encountered difficulty in obtaining historical data for LDCs in its Study Group going back further in time than 1998.

There are also inherent technical differences between electric distribution and the LDC industries. For example, the average service life assumption LEI developed was explicitly geared at gas distribution network infrastructure.

Some methodological differences are based on practitioner preference but are generally immaterial on the conclusions (for example, in the NSTAR
Electric rate case, Christensen Associates used the Tornqvist index while LEI used the chained Fisher Ideal index for NSTAR Gas.

IV. SUMMARY OF TOTAL COST BENCHMARKING STUDY

Q. Please describe the key aspects of a Total Cost Benchmarking Study.

A. Total cost benchmarking allows LEI to study the relative productivity of firms, through cross-sectional comparison across companies of each LDC’s total cost of operations with the outputs (or services) each provides, after controlling for size of an LDC’s business and other important factors (also referred to as business condition, or drivers). The ultimate purpose of a Total Cost Benchmarking Study is to be able to compare an LDC’s actual costs to its predicted cost, given input prices, the size of the LDC, and key business drivers. For purposes of determining which LDCs are relatively efficient and ranking companies accordingly, each LDC’s actual cost is compared to its predicted cost. LDCs with actual costs lower than predicted are more efficient than average; LDCs with actual costs that are higher than predicted are less efficient than average. LDCs are then ranked by the size (and sign) of the gap between actual and predicted costs. The most efficient LDCs have large negative gaps (actual costs are much lower than predicted). The least efficient LDCs have large positive gaps (actual costs are much higher than predicted).
Q. **How would a regulator use a Total Cost Benchmarking Study?**

A. Under a revenue cap per customer, the regulator will be setting a trajectory for rate adjustments over the term of the PBR rate plan. The regulator will also be approving the starting point for escalation, namely the base rate. The results of a Total Cost Benchmarking Study provide empirical evidence that may be used to inform the regulator’s judgment on an appropriate expectation for further efficiency improvements for the regulated LDC, in addition to the industry’s average TFP growth trend. An LDC that has actual costs that are lower than the costs predicted by the benchmarking model is more efficient than what is otherwise predicted given its location, customer base, type of customer, network characteristics, etc.

By identifying the relative efficiency of the regulated firm, the Total Cost Benchmarking Study helps the regulator calibrate the I-X mechanism. Generally, an LDC that is more efficient relative to its peers has less room for further cost savings; whereas a company that is less efficient than its peers has more room for improvement. As such, regulators may set “stretch factors” (above and beyond the industry-average X factor target) to motivate a relatively inefficient regulated firm to catch up to its peers.
On the other hand, if a Total Cost Benchmarking Study suggests the
regulated LDC is relatively efficient, then the proposed base rate is already
reflecting the relative efficient levels of cost of service. Also, for this
relatively efficient LDC, additional incentives (in the form of stretch factor)
are not necessary. This conclusion should not be interpreted to suggest that
an efficient firm will be given an opportunity to slack off and fall behind.
The X factor will still provide an incentive for this LDC to achieve
productivity gains consistent with the industry norm.

Q. What methodology did LEI apply to conduct the Total Cost
Benchmarking Study?

A. LEI conducted an econometrics-based Total Cost Benchmarking Study.
Econometrics-based benchmarking is a well-established approach for
comparing firms based on their total costs and outputs. An econometric
model allowed LEI to control for factors such as the price of inputs (such as
the price of labor) and the size of the LDC (which can be measured by the
number of customers served). The model can also include other factors that
could impact total cost, such as composition of the firm’s LDC network (for
example, miles of pipeline not made of cast iron or bare steel, age of
network, customer density), the profile of customers served (for example,
percentage of residential customers served), and regional factors (like
population density of the region where the LDC’s service territory is located. Controlling for business factors such as these, which are outside of the control of management, is important for arriving at a measure of cost efficiency that can be interpreted as the result of business decisions and activities that are under the control of management at the firm.

Q. What are the prerequisites for conducting an econometrics-based benchmarking analysis?

A. The use of econometrics requires a large set of standardized data to provide reliable results. LEI’s Total Cost Benchmarking Study for the LDC sector used the same dataset as LEI’s Industry TFP Study, with certain additional factors and metrics compiled from reliable sources like the United States Energy Information Administration (“EIA”). The LDC data collected from state regulatory filings, FERC, and EIA is sufficiently standardized because of the existence of EIA and FERC reporting requirements, as well as common accounting practices for state regulatory filings.

The econometric approach has been used in many PBR submissions and has been accepted by regulators in numerous jurisdictions, including in Australia, Colorado, New Zealand, Oklahoma, Ontario, and the United Kingdom, to name a few.
Q. How does the econometric analysis work for purposes of benchmarking?

A. An econometric model estimates the statistical relationship between a dependent variable (in this case, the total cost of service) and a set of independent variables (in this case, input prices, firm size, and other important business conditions). The econometric process allows us to track how changes to the independent variables individually are related to changes in the dependent variable.

For example, when the number of customers served is higher, common sense tells us that total costs will be higher. The econometric process allows for estimating how much higher total costs will be for an additional number of customers. The econometric process also allows isolating the impact of the number of customers from other factors that impact the total cost. The econometric results also indicate how well the independent variables as a whole explain (or, alternatively, predict) the level of the total cost for a given utility. This is referred to as the “fit” of the econometric model and is the main focus of utility benchmarking analysis. Utility benchmarking requires a model with a good fit. This is because, in order to evaluate an individual LDC’s efficiency relative to its peers, the total cost for each LDC as predicted by the model is compared to the actual total cost for each firm.
LEI selected to use the transcendental logarithmic (“translog,” or “TLC”) cost function to benchmark performance. The TLC is a tried-and-tested tool for empirical research of costs in many sectors of the economy, with examples as diverse as oil and gas production, banking, airports, and school systems, as well as utilities. To use the TLC, the raw data is logged (using the natural logarithm of each data point) and normalized. This process eliminates wide variations in the data and provides predicted total costs which are readily comparable across firms.

Q. What data is used in the Benchmarking Study?

A. Unlike the LEI Industry TFP Study, where LEI was interested in the trends for the industry (and therefore LEI aggregated firm-level data into a representative industry value), an econometric benchmarking study leaves the data at the individual firm level. The LEI Industry TFP Study evaluated 83 LDCs. These same firms were analyzed in the LEI Benchmarking Study (although one firm was removed21 as it has incomplete data for one of the independent variables). There is no need to, nor is it desirable to narrow down the list of firms analyzed in the Benchmarking Study to those most

21 The company that was removed in the benchmarking study is the Avista Corporation as it lacked data on miles of pipeline across the Study timeframe.
similar to NSTAR Gas, based on size or other business conditions. These factors are controlled for in the econometric process.

Q. What costs were included in the Total Cost Benchmarking Study?
A. Total costs consisted of OM&A costs and capital costs, both of which were sourced from the dataset used in the LEI’s Industry TFP Study.

Q. What other independent variables were included in the Total Cost Benchmarking Study?
A. A number of variables were considered for inclusion. The goal was to identify factors that impact the total costs of service for LDCs. The final set of independent variables in the TLC equation included: the number of customers served (an important variable which controls for the size of the company), the price of capital, the price of OM&A, the percentage of pipeline mains (by length) not made of cast iron or bare steel, the share of residential customers, percentage of pipeline (by miles) built in the last 10 years, network density, and population density in the region where the LDC is located.

Q. What timeframe was analyzed in LEI’s Total Cost Benchmarking Study?
A. The Total Cost Benchmarking Study, for purposes of forward-looking ratemaking, should focus on understanding the current efficiency of LDCs.
Unlike the TFP analysis, which is used to establish the trend in productivity improvement over time, a benchmarking study must reflect the current efficiency of a firm to develop the efficiency level of the firm at the start of the next regulatory period for the purpose of ratemaking. Therefore, LEI examined only the period of 2014-2017, rather than a longer time series of data found in LEI’s TFP Industry Study. LEI used four years of data, rather than only one, to ensure that results would not be overly influenced by events or issues that only impacted the LDC data for a single year. Also, four years of data provided LEI with more observations: in econometrics, reliability of results is correlated with the number of observations.

Q. Please summarize the results of LEI’s Total Cost Benchmarking Study for NSTAR Gas.

A. LEI’s Total Cost Benchmarking Study indicates that NSTAR Gas is relatively efficient. The Company had actual total costs below those predicted by the econometric model for three of the last four years, which suggests that the Company is a relatively efficient operator. LEI also constructed a ranking of all LDCs, based on the size of the difference between actual cost and predicted costs. As noted previously, companies with the largest negative difference (i.e., average costs lower than predicted) are the most efficient; companies with the largest positive
difference (actual costs greater than predicted) are the least efficient. Because LEI used logged and normalized data in the econometric model, the relative size of the difference between actual and predicted costs do not reflect the size of the firm, it only reflects the firm’s efficiency. Based on this ranking, the Company placed in the second quartile of all LDCs in the Study Group for the U.S. sample and was in the first quartile of LDCs located in the Northeast Region.

Q. What do the results of the Total Cost Benchmarking Study mean for setting the I-X escalation mechanism for NSTAR Gas?

A. In our professional opinion, the results of LEI’s Total Cost Benchmarking Study confirm that NSTAR Gas is already a relatively efficient LDC and, therefore, should not be required to achieve any additional stretch factor or higher X factor than what is justified based on industry average TFP trends.

V. IMPLICATIONS FOR THE COMPANY’S REVENUE CAP PER CUSTOMER PROPOSAL

Q. Do you support the I factor proposed by NSTAR Gas?

A. Yes. The I factor proposed by the Company is consistent with the Department’s most recent decisions, and it also reflects the three basic requirements for an I factor. When deciding upon the inflation factor, I considered the following criteria:
- **Data availability and Reliability** – data to be used to calculate the I factor should be readily available in time for setting the rates, and the data should come from a reputable and reliable source (the proposed GDP-PI is drawn from data produced by the Bureau of Economic Analysis);

- **Implement-ability and Simplicity** – the I factor should be easy to calculate and understand; and

- **A representative of the Utility’s Observed Inflationary Cost Pressures but Also Not Self-Referential** – the I factor should not only reflect inflationary input cost pressures faced by the LDCs but also should not be susceptible to being manipulated or affected by the Company.

NSTAR Gas proposes to use the GDP-PI for the I factor. The GDP-PI meets all the criteria mentioned above for the development of an appropriate I factor. More specifically, it is published by a reputable independent agency, and it reflects cost pressures across all inputs such as labor, capital, materials, and services faced by all businesses (not just LDCs). Lastly, the Company cannot impact the GDP-PI trends.
Q. How is the observed industry TFP trend reflected in the NSTAR Gas revenue cap per customer proposal?

A. Since NSTAR Gas is proposing an economy-wide inflation index (GDP-PI), the TFP growth rate results need to be calibrated to reflect the industry cost trends. More specifically, the X factor should consist of a TFP differential and an input price differential if an economy-wide measure is used for the I factor, as discussed further in Section 5 of LEI’s Industry TFP Study. As described in an earlier section of this testimony, the Northeast Region industry TFP trends are the appropriate benchmark for calibrating NSTAR Gas’ X factor and PBR formula. The TFP trend of -0.39% needs to be adjusted by the -0.32% input price differential and -0.98% TFP differential. As such, the X factor that should be reflected in the Company’s revenue cap per customer proposal is -1.30%.

Q. What are the key takeaways from LEI’s Total Cost Benchmarking Study for the Company’s revenue cap per customer proposal?

A. Because NSTAR Gas is already relatively efficient, there is empirical evidence to suggest that there is no need for additional stretch factor or other adjustments to the estimated base rate, which will anchor the revenue cap per customer proposal.
Q. Are adjustments to the X factor necessary to account for the legislated Gas System Enhancement Plan ("GSEP") program?

A. No, I do not believe that adjustments to the X factor are warranted. The GSEP program and the X factor are two distinct aspects of the utility regulatory regime. The X factor measures improvements in physical productivity over time for the industry, and as part of the I-X formula, the X factor will dictate how rates will change in the future and that will in turn incentivize the Company to become more efficient. In contrast, the GSEP program is an accounting mechanism for timely recovery of qualifying spending and investments in rates.

As I have previously described in this testimony, the TFP trend measures the change over time in the physical productivity of the industry. That productivity trend, in combination with inflationary cost pressures for the industry’s inputs, leads to calibrated values under the I-X formula. It is this same I-X formula that provides the primary incentive for the Company to become more efficient. In contrast, the GSEP program is not measuring physical productivity, nor is it creating an overarching incentive for the Company to improve its productivity. The GSEP program simply sets out the process for the Company to apply for timely recovery of qualified
expenditures and capital investments aimed at repairing or replacing aging or leaking natural gas infrastructure.\(^{22}\)

According to the American Gas Association, “47 utilities in 22 states serving 24 million residential natural gas customers are using full or limited special rate mechanisms to recover their replacement infrastructure investments.”\(^{23}\) The aggregate effect of all such accounting programs and regulatory treatments are not distinguished in the LEI Industry TFP Study, nor should it be. It is standard practice to include as many firms as the data allows in the Industry Study Group for productivity growth analysis, irrespective of regulatory arrangements.

Furthermore, it is not possible to quantify accurately or exclude the changes in capital inputs that are may be related to GSEP-type investments for peer companies of NSTAR Gas, as the sources of data that are publicly available

\(^{22}\) I understand that the GSEP program provides for timely rate recovery of qualified expenditures and capital investments that repair or replace aging or leaking natural gas infrastructure, including replacement of mains, services, and other facilities. Each year, LDCs in Massachusetts submit an annual plan to the Department. A cap of 3% of the LDC’s most recent calendar year total firm revenues, including gas revenues attributable to sales and transportation customers, is set for the yearly changes in the revenue requirement. If the plan is accepted, the LDC may begin recovering the estimated GSEP revenue requirement on May 1 of the year following submission of the plan.

for gas companies do not disaggregate capital investment by the form of
accounting treatment. Therefore, incorporating an offset to the X factor to
specifically align the factor with GSEP expenditures will undermine the
validity of the X factor.

Q. Are you concerned that a revenue cap per customer may cause NSTAR
Gas to implement unduly severe cost reductions and/or defer
investments, leading to deteriorating service quality for the utility
customer?

A. No. I understand that the Company is seeking to continue its commitment
to monitor service quality (and adhere to the goals of its scorecard metrics).
As such, the revenue cap per customer, while encouraging the Company to
seek out cost reductions, will also motivate the Company to continue to
adhere to the performance targets previously set by the Department for its
operations.

Q. Will the proposed revenue cap per customer with the I-X rate adjustment
mechanism create the appropriate incentives?

A. Yes. NSTAR Gas has not sought base-rate relief since 2014, and prior to that
case, the Company did not petition for base-rate relief for over 20 years.
Therefore, in effect, the Company has been operating under an implicit
form of PBR where the X factor was equal to the rate of inflation (which has
averaged 1.73% per annum from 2016 through 2018). Although the
inflation rate was positive, the Company has experienced declining customer growth and anticipates that this will continue. Moreover, the Company is facing several challenges that are requiring expanding OM&A and incremental capital investment due to increasing requirements related to system safety. As stated in Exhibit ES-WJA/DPH-1, these include gas-safety directives associated with the Merrimack Valley event and various investigations related to this, non-GSEP work related to pressure regulation modernization, pressure protection devices, and system resiliency investments to mitigate energy disruptions, to name a few.

A revenue cap with an I-X adjustment mechanism allows the Company to commit to a five-year PBR term. The five-year term will mean lower overall regulatory costs for the Company and the regulator, ultimately benefiting customers. The efficiency incentives of a revenue cap design will also create valuable benefits for consumers as well as the Company, as discussed above.

24 Exhibit ES-DPH-ANB-1.
25 As stated in Exhibit ES-WJA/DPH-1.
26 As stated in Exhibit ES-WJA/DPH-1.
1 Q. Does this conclude your testimony?

2 A. Yes.
Curriculum Vitae of:

Julia Frayer
Marie Fagan

Exhibit ES-JF/MF-1, Attachment A
Curriculum Vitae

JULIA FRAYER
Managing Director, London Economics International LLC

KEY QUALIFICATIONS:

Julia Frayer is a Managing Director with London Economics International LLC (“LEI”), specializing in economic analysis and evaluation of infrastructure assets, such as power plants, natural gas-related infrastructure, electricity transmission and distribution systems, and utilities, as well as market design and expert economic advisory services for regulated and competitive power markets. She has worked extensively in the US, Canada, Europe, and Asia in valuing electricity generation and wires assets, water and wastewater networks, as well as gas transportation assets. She also provides expert advice on market rules, innovative rate design, and institutional best practices for the management of infrastructure assets.

Julia manages LEI’s quantitative financial and business practice area and also specializes in market and organizational design issues related to electricity. In addition to electric generation sector market power and anti-trust analysis, sample projects include cost of capital estimation; rate-setting analysis; short- and long-term forecasting of wholesale power prices; valuation of generators and vertically-integrated utilities; assessment of retail market design including provider-of-last resort portfolios and contracts; design of energy sales agreements; and advisory on structuring request for proposals and sale processes for energy assets and derivative contracts. As part of these analyses, Julia and her team of economists and consultants have developed and applied proprietary real-options based valuation tools, portfolio risk analytics, models of strategic bidding behavior, and sophisticated power system simulation tools, as well as customized econometric models. Julia also leads many of the firm’s regulatory economics projects, spanning such diverse issues as cost-benefit analysis, market power mitigation, tariff ratemaking, auction design (including competitive solicitations for procurement), wholesale market rules design, productivity analysis and efficiency benchmarking.

Prior to joining LEI, Julia was working as an Investment Banker with Merrill Lynch in New York.

EDUCATION:

Boston University, Boston, MA, B.A. in Economics and International Affairs.

Boston University, Boston, MA, M.A. in Economics.
EMPLOYMENT RECORD:

From: 1998 To: present
Employer: London Economics International LLC, United States
 Managing Director

PROJECT EXPERIENCE:

The projects briefly described below are typical of the work Julia has performed throughout her career at London Economics International LLC.

Performance-based regulation

- *performing a total factor productivity (“TFP”) and benchmarking analysis:* LEI is currently engaged to support a Canadian utility in relation to its second-generation hydroelectric payment amounts price-cap application before the Ontario Energy Board (“OEB”). The project involves performing an updated TFP study reflecting the OEB’s 2017 Decision on the first-generation price-cap index. Other key tasks include the preparation of analysis and written evidence assessing whether the inflation factor and treatment of the Capacity Refurbishment Variance Account remain appropriate.

- *provided an analysis of building block incentive ratemaking approaches and their applicability to Enbridge, a natural gas distribution utility in Ontario:* LEI’s report supported the client’s distribution tariff proposal submission to the Ontario Energy Board (“OEB”) for a second-generation Customized Incentive Regulation (“IR”) plan for the period of five years (2014-2018). The testimony set out the theory behind as well as the practical experience of using the building blocks approach in incentive regulation regimes. Julia Frayer appeared before the OEB for cross-examination. [OEB File No. EB-2012-0459]

- *prepared a report for Ontario Power Generation (“OPG”) entitled “Empirical Analysis of Total Factor Productivity Trends in the North American Hydroelectric Generation Industry:”* The purpose of this report was to share findings from LEI’s TFP study, which estimated TFP trends for a select group of peers from the North American hydroelectric generation industry. Data for this study covered eleven years from 2002-2012. The purpose of this new engagement is to update this study for newly available data (encompassing operating costs and other statistics for calendar years 2013 and 2014). In February 2016, this analysis was updated for newly available data from calendar years 2013 and 2014. LEI supported OPG through 2017 in recommending an appropriate X factor, and I factor to use in an I-X regime for hydroelectric generation.

- *provided expert testimony in support of FortisAlberta Inc. (“FAI”) in its filing for a performance-based ratemaking (“PBR”) plan with the Alberta Utilities Commission (“AUC”):* The testimony provided detailed data analysis (including inflation and TFP trends), underpinning PBR economic theory, and reviews of best practices in various North
American and International jurisdictions. The testimony offers back up elements for each of the various components of the PBR plan that is being proposed by FAI. Julia testified at the AUC in the Spring of 2012. [AUC Proceeding No. 566]

- **prepared total factor productivity study and presented testimony in respect of Ontario Power Generation’s (“OPG”) hydroelectric incentive ratemaking plan:** LEI was retained by OPG to assist in the development of its first generation IRM plan, following the formulaic I-X approach. LEI prepared an industry study of TFP trends spanning the North American hydroelectric sector. LEI also recommended an inflation index, which reflected cost drivers relevant to OPG while also aligning with the regulatory precedent in Ontario. LEI testified before the Ontario Energy Board. LEI’s analysis supported the successful approval of OPG’s first generation IRM plan for its regulated hydroelectric fleet. [OEB EB 2012-0340]

- **advised the Coalition of Large Distributors in Ontario on 3rd generation Incentive Regulation Mechanism proceedings of the Ontario Energy Board:** The work involved expert testimony filed with the Board with detailed analysis of the theory behind the various components of PBR system, including inflation and efficiency gains factors, treatment of capital expenditures among others. The analysis was supplemented with a comparison of actual factors and indices, and determination of the more robust and appropriate indices for Ontario’s distribution industry, including total factor productivity analysis for the sector. [OEB Docket No. EB-2007-0683]

- **advised on regulatory processes:** LEI was engaged by Ontario Power Generation (“OPG”) to support senior management through regulatory processes related to performance-based rates. Julia and her team of experts prepared a discussion paper on incentive regulation mechanisms (“IRM”) currently in place in Ontario for electricity and natural gas distribution utilities and presented it at a technical workshop at the Ontario Energy Board (“OEB”).

- **advised on policy and governance framework to Malaysia client:** LEI was engaged by Tenaga Nasional Berhad (“TNB”) to work as the project manager of its Incentive-Based Regulation (“IBR”) submission for the 2nd regulatory term. LEI provided advice on the policy and governance framework for the implementation of IBR, providing strategic advice to IBR Council and TNB management regarding the IBR submission, managing and monitoring the submission process, coordinating with business entities, and attending IBR Council meetings, progress meetings, and challenge workshops. Moreover, LEI reviewed the current Regulatory Implementation Guidelines (“RIGs”) set by the Energy Commission and proposed enhancements to the RIGs. LEI is also currently involved in negotiations with the Energy Commission regarding proposed changes to the RIGs. LEI is also updating and providing enhancements to TNB’s Revenue Requirement Model (“RRM”), which sets the IBR tariff for each business entity. Furthermore, LEI assisted in the writing of the IBR submission report to the Energy Commission.

- **prepared white paper for Canadian electricity regulators and utilities on the comparative advantages and drawbacks of various tariff-setting regimes, from performance-based regimes to cost-of-service:** This project involved a general overview of tariff-setting
practices across Canadian provinces as well as highly detailed Canadian and international case studies and an examination of the key-lessons to be learned from each case. Detailed case studies covered the tariff-setting regimes in place in the UK, the Australian National Electricity Market, and the Netherlands. As part of its deliverables, two workshops were conducted with a variety of regulators and utilities.

Written and Oral Testimony

- **expert services for approval of a settlement**: LEI was engaged by a private client to provide expert services in connection with the motion of the Financial Management and Oversight Board of Puerto Rico, as representative of the Puerto Rico Electric Power Authority (“PREPA”), and the Puerto Rico Fiscal Agency and Financial Advisory Authority for approval of a settlement with PREPA’s bondholders in PREPA’s PROMESA Title III case. LEI’s expert services included performing economic analyses, preparing an opening expert report, sitting for a deposition, and testifying at the hearing on the motion.

- **evaluate the costs and benefits of the Maine Power Delivery Authority**: LEI was retained by the Maine Public Utilities Commission to analyze the short- and long-term costs and benefits of the Maine legislature's proposal (as presented in L.D. 1646) to establish the Maine Power Delivery Authority (“MPDA”). LEI examined the legal, regulatory, technical, financial, and operational issues related to the L.D. 1646 proposal and its implementation, assessed the anticipated impacts of electricity rates, utility employees and ratepayers, and developed alternatives and amendments to the L.D. 1646 proposal to address any identified obstacles to its implementation. The results of LEI’s findings were presented to the Maine Legislatures’ Joint Standing Committee on Energy, Utilities, and Technology.

- **independent evaluation of New England Clean Energy Connect transmission project in its siting proceeding at the Maine Public Utility Commission (“MPUC”)**: LEI was retained in 2017 to advise the MPUC staff on the wholesale electricity market impacts and macroeconomic effects of the new transmission project on Maine’s economy and the economies of other New England states. LEI prepared an independent forecast of future energy and capacity market benefits, carbon emissions reductions, and local GDP and employment impacts as a result of the construction and operations of the project; LEI also critically reviewed the submission of other parties on this topic. After providing written testimony, LEI staff led by Julia Frayer testified at the MPUC in late 2018. [MPUC Docket 2017—00232]

- **provided independent assessment of Alberta’s Comprehensive Market Design**: LEI provided a critical review of the new capacity and energy market design being proposed by the Alberta Electricity System Operator (“AESO”) in a written report submitted, on behalf of a market participant, to the Alberta Utilities Commission (“AUC”). LEI identified criteria for evaluation of the new market design, compared the AESO’s proposal against other well-established organized wholesale electricity markets, and then categorized associated rules.
based on an objective evaluation of both positive and negative features. [AUC Proceeding No. 23757]

- **assessment of Efficiency Maine Trust’s submission of its program plan and specifically the avoided cost of energy supply:** LEI was retained by the Maine Public Utility Commission (“MPUC”) to provide an independent forecast of future natural gas prices, wholesale energy and capacity prices, which would be relevant for cost-effectiveness analysis of future energy efficiency programs. LEI was also asked to review the multi-stakeholder report that Efficiency Maine Trust and other New England program administrators commissioned in 2014 (and 2015 Update), and subsequently in 2017. LEI staff testified before the MPUC on several occasions over the course of this multi-year engagement. [MPUC Docket 2018-00321]

- **efficacy of distributed generation as a non-transmission solution to local transmission reliability problems:** LEI prepared direct testimony and rebuttal testimony related to the technical efficacy and cost-effectiveness of various non-transmission alternatives and specifically distribution levels solar and battery storage solution to a known reliability problem in a load pocket within Massachusetts. [Massachusetts, docket EFSB 17-02/D.P.U. 17-82/17-83]

- **conducted a non-transmission alternative study:** LEI was hired to conduct a Non-Transmission Alternatives (“NTA”) analysis for the two transmission projects, which are a component of larger transmission solutions being proposed by Eversource for the Greater Hartford and Central Connecticut (“GHCC”) area. The objective of the NTA analysis was to determine the feasibility and viability of other non-transmission resources – such as new generation and new demand-side resources – to be developed in lieu of these two specific transmission projects to relieve transmission reliability concerns. The NTA analysis was filed as part of Eversource’s application with the Connecticut Siting Council (“CSC”) for each of these transmission projects. [CSC Docket No. 474]

- **assessment of congestion in the New York power market:** LEI was commissioned by a coalition of community groups to prepare an independent outlook of the New York power wholesale market conditions and assess the level of congestion anticipated on major transmission interfaces within the state. LEI studied multiple scenarios to illustrate the impact of major drivers on congestion levels. LEI presented the findings at a technical conference organized by the New York Public Service Commission (“NYPSC”) for the purpose of evaluating the benefits of new AC transmission projects. [NYPSC Case 12-T-0502]

- **engaged by Eversource and National Grid to determine the economic viability of non-transmission alternatives (“NTAs”):** LEI started the analysis by screening prospective NTA technologies based on their technical characteristics, their relevance in the New England market and their technical applicability. LEI conducted a comparative cost analysis to estimate the levelized cost per kW-month over the economic life of each of the technologies. Finally, the most probable combinations of NTA technologies identified in the selection
process were further evaluated based on criteria, including physical constraints such as land availability, siting issue, financing hurdle, etc. This NTA analysis was conducted for three separate NTA projects that together formed a part of the overall Greater Boston Reliability Project (also known as “AC Solution”). LEI also provided oral testimony about its analysis to the Massachusetts regulator for each of these projects: Wakefield-Woburn NTA Analysis (DPU 15-140 & 15-141), Mystic-Woburn NTA Analysis (DPU 15-64 & 15-65) and Merrimack Valley Reliability Project (DPU 15-44 & 15-45).

- **Independent evaluation of the costs and benefits of the Northern Pass transmission project:** LEI submitted written testimony to the Site Evaluation Committee (“SEC”) in New Hampshire on the costs and benefits of the proposed transmission project; the analysis focused on wholesale electricity market impacts as well as macroeconomic effects of lower electricity rates and infrastructure investment at the state level in New Hampshire and other states in the region; Julia Frayer also provided oral testimony as part of the SEC’s hearings on the project. [SEC Docket No. 2015-06]

- **Assisted in exploring options to expand Maine’s natural gas supply:** LEI was engaged by the State of Maine Public Utilities Commission to assist the MPUC in evaluating options for expansion of natural gas supply into Maine (to reduce the cost of gas and power to Maine customers). LEI reviewed and evaluated proposals for firm natural gas transportation service by pipeline developers. These evaluations included LEI’s review of commercial terms include in the pipeline Precedent Agreements that underpin capacity expansion projects, review of contract provisions for Firm Transportation Agreements and Negotiated Rate Agreements; and evaluation of the status of the FERC and state-level permitting process for each pipeline proposal. The project also included natural gas network modeling (using GPCM, an industry-standard network model of the North American natural gas system) and power simulation modeling (using LEI’s proprietary POOLMod model) to arrive at a quantitative cost-benefit analysis of proposals. The Regional Analysis was an additional modeling exercise, to extend the analysis to address the impact on Maine if it were to go forward under a regional initiative to procure pipeline capacity. Testimony was filed in February 2016, and LEI testified in March 2016. [MPUC Docket Number 2014-00071]

- **Estimation of the spot market and forward market impacts around the discretionary timing of outages by large generation owner in Alberta:** LEI prepared an independent analysis of the spot market and forward market impacts of outage scheduling practices by TransAlta over the period of 2010-2011; the analysis was filed with the Alberta Utilities Commission (“AUC”) as part of a litigated case of alleged market power abuse. [AUC Proceeding No. 3110]

- **Testified on behalf of the NEPOOL in a jump ball filing at FERC regarding the Performance Incentive scheme proposed by ISO-NE:** in written testimony submitted to FERC, Julia Frayer identified shortcoming in ISO-NE’s proposed performance incentive scheme for its forward capacity market. [Docket No. ER14-1050 at FERC]
served as testifying witness on the issue of utility joining a wholesale market: Julia served as testifying witness and lead author in evaluating Entergy’s decision to join the Midwest Independent Transmission System Operator (“MISO”) Regional Transmission Organization (“RTO”) on the behalf of the Public Utility Commission of Texas. LEI evaluated several existing cost/benefit studies related to Entergy’s decision to join MISO over the Southwest Power Pool (“SPP”) and will be providing quantitative and qualitative analysis of specific costs/benefits attributable to ETI and its customers following membership in either MISO or SPP, including but not limited to net trade benefits, transmission cost allocation, governance issues, and continued participation in the Entergy Service Agreement following RTO membership. [SOAH Docket No. 473-12-6206; PUC Docket No. 40346]

served as Independent Expert regarding Load Following Service products: ENMAX retained LEI to act as an independent expert on matters related to proposed auctioning for the Load Following Service (“LFS”) product. LEI provided an independent evaluation of the proposed auction, including evaluation of both the product being auctioned and the auction mechanism and key parameters. The LFS product, as proposed to be auctioned was meant to represent the “shape risk” in the RRO service. LEI’s evaluation considered whether the product and auction mechanism would result in an efficient, competitive, and fair outcome for the Alberta market, RRO providers, potential suppliers of the auctioned product, and customers of the RRO service. LEI prepared a report titled “Independent assessment of proposed market-based determination of shape risk in RRO supply” dated January 24, 2014, which was filed in ENMAX’s Application No. 1610120 before the Alberta Utilities Commission (“AUC”). [AUC Proceeding No. 2941]

testimony in support of transmission operating rules and curtailment protocols for interties into Alberta: Julia provided testimony in support of transmission operating rules and curtailment protocols for interties into Alberta, as proposed by the Alberta Electricity System Operator (“AESO”), in order to support a fair, efficient and openly competitive power market. The testimony was made in front of the Alberta Utilities Commission (“AUC”), on behalf of Morgan Stanley Capital Group (“MSCG”), a customer of the Montana-Alberta Transmission Line. Julia’s analysis considered commercial as well as operating protocols in deregulated power markets and considers how market rules incentivize new entry and produce dynamic efficiency gains related to more intense competition. The AUC issued a favorable decision to MSCG in early 2013. [AUC Proceeding No. 1633]

provided testimony regarding the proposed merger of two regional utilities at PURA: Julia provided written testimony and oral testimony at the Connecticut Public Utility Regulatory Authority (“PURA”) related to the market power consequences of proposed merger of NU-NSTAR. [PURA Docket No. 12-01-07]

prepared testimony and testified in support of TransAlta in relation to a settlement for contravention of FEOC Regulation related to the timing of exports from 2010: The settlement was crafted by the Market Surveillance Administrator and filed with the Alberta
Utilities Commission ("AUC") for approval in December 2011. LEI assessed the economic and policy considerations of the settlement and its appropriateness in context of enforcement and sufficiency of penalty payment. [AUC Proceeding No. 1553]

- **conducted RPS review**: Pursuant to An Act To Reduce Energy Prices for Maine Consumers, P.L. 2011, ch.413, sec. 6 (the “Act”), the Maine Public Utilities Commission ("MPUC") was directed by the Legislature to study Maine’s renewable portfolio requirement established in 35-A M.R.S.A. § 3210 (3-A). LEI was engaged by MPUC to conduct an in-depth analysis of the renewable portfolio standards ("RPS") required by the Act which would support the MPUC’s study and report to the Legislature. Julia led the team in preparation of the report, which was submitted to the Commission in January 2012 and later testified at the state legislature on the key findings of that report. [MPUC Docket No. 2011-271]

- **prepared detailed cost-benefit analysis and macroeconomic impact analysis in support of the Champlain Hudson Power Express ("CHPE") application for siting approval at the New York Department of Public Service ("DPS" or also known as “NYPSC")**: LEI's analysis on economic effects was the cornerstone of the settlement agreement reached between TDI and a number of New York agencies. Julia acted as an independent expert on behalf of TDI and prepared updated study results on energy market impacts, capacity market impacts and also macroeconomic benefits stemming from the operation of the CHPE project. Julia’s testimony was used in the DPS proceeding in the summer of 2012 and CHPE was successfully granted its Article VII permit. [NYPSC Case 10-T-0149]

- **served as lead expert witness for a private equity investor in matter related to a contractual dispute regarding a long term power purchase agreement between a municipal utility located in New England and a landfill gas generator**: Ms. Frayer analyzed key contractual terms of the PPA and provided an expert’s review of how those terms compared to the industry norm when the contract was signed and became effective. Ms. Frayer provided an independent estimate of potential contractual damages. The case was scheduled to be heard in Massachusetts Superior Court; however, Julia’s analysis helped support a successful settlement.

- **merger analysis between hydroelectric operators**: Julia and her team of economists supported the client in preparation of a merger application to the Federal Energy Regulatory Commission ("FERC") under Section 203 of the Federal Power Act, in conjunction with the client’s acquisition of a Maine-based hydroelectric generation portfolio. LEI performed a full Delivered Price Test analysis for the ISO New England control area. LEI’s analysis was filed with FERC, and the Merger Application was approved in early 2013; market-based rate authority was subsequently granted in mid-2013. [FERC Docket No. ER13-1613]

- **merger analysis in support of the NRG, Inc. and GenOn merger**: LEI staff, under Julia’s direction and guidance, performed Delivered Price Tests analysis for the Federal Energy Regulatory Commission ("FERC") under Section 203 of the Federal Power Act and submitted the extensive analysis to FERC in the summer of 2012. The Merger Application
was successfully approved by FERC in December 2012. Subsequently, LEI assisted the client in preparation of the 205 market-based rate authority analysis. [FERC Docket No. EC12-134]

• provided expert testimony before FERC related to Shell Energy's sale of capacity commitments from facilities in New York to New England in an alleged market manipulation case: Julia examined market rules, operating procedures, and pricing arrangements in New England and New York at the time of the investigation, and examined the participation of Shell in the capacity markets and compliance offers in the energy markets, commenting on the economic rationale behind the client’s must offer strategies in the energy market for capacity compliance. [FERC Docket No. EL-09-47 and EL-09-48]

• provided testimony on behalf of NRG Energy, Inc. in opposition to the proposed acquisition of NRG by Exelon Corp (Exelon): LEI performed a preliminary Herfindahl-Hirschman Index test for market power for all regions affected, and a Delivered Price Test, for the PJM East and ComEd regions. In addition, LEI examined Exelon’s post-merger optimal bidding strategies using our proprietary model of strategic, known as CUSTOMBid. LEI also assessed the impact of changes in the parent company Exelon’s cost of capital on the activities of the company’s two regulated subsidiaries: ComEd and PECO. LEI also estimated the impact on customer costs from potential debt downgrades following the merger and assessed the effectiveness of Exelon’s proposed ring-fencing measures. LEI’s written evidence was filed with FERC and Pennsylvania Public Utility Commission. [FERC Docket No. EC-12-134]

• prepared testimony on cost-benefit analysis: Julia submitted testimony on behalf of the Staff of the Maryland Public Service Commission (“MPSC”) to the MPSC to conduct a cost-benefit analysis in relation to the proposed transaction between Constellation Energy Group, Inc. (“CEG”) and Électricité de France (“EDF”) whereby EDF would purchase from CEG a 49.99% interest in Constellation Energy Nuclear Group, LLC (“CENG”). Benefits related to the decreased likelihood of a Baltimore Gas & Electric (“BGE”) downgrade increased the likelihood of the Calvert Cliffs expansion being completed and several macroeconomic benefits stipulated to by EDF. Costs related to the limitation on the allocation costs of CEG corporate support services to CENG increased risk of capital deprivation and reduced quality of service, and implications of CEG’s more aggressive nuclear development. [MPSC, Case No. 9173]

• assessed the costs and benefits of new transmission versus generation alternatives to the system: New England wholesale electricity markets were simulated in order to determine whether the Greater Springfield Reliability Project would produce economic benefits to the New England region. In order to ensure that economic benefits were not subject to the forced outage and availability schedule of the simulated energy markets, LEI simulated the energy market with 30 different random forced outage and availability schedules. Using these simulations, the distribution of results was used to calculate confidence intervals and hypothesis tests run on the results, hence increasing the robustness of our findings. The study results were used to produce written testimony to the Connecticut Siting Council.
• prepared proposal on pricing safeguards: In September 2005, Julia’s proposal for pricing safeguards in the wholesale market, referred to as the Peaker Entry Test, was submitted to the Public Utility Commission of Texas as an alternative to the Commission staff’s proposal initially under Project No. 24255 which was later moved to and renamed by the PUCT as Project No. 31972. In April 2006, the PUCT adopted a variant of this proposal for use as pricing safeguards – the Scarcity Pricing mechanism (as specified in the above-mentioned project). Under Project No. 29042, in September 2005, Julia looked at the Pivotal Supplier Test and supplied a critique of the PUCT staff’s initial market power mitigation proposal. In June 2005, Julia participated on panel discussing market monitoring issues, as well as market power safeguards for wholesale electricity markets. In 2004, she also provided testimony on pricing safeguards proceeding, which looked at alternative market power testing procedures for market power, analyzed implications on investment, and discussed efficiency consequences of certain bidding behavior. She also prepared and filed comment testimony and quantitative analysis on questions of market definition and market integration for the Public Utility Commission review in Project No. 29042. [In November 2005, pursuant to PUCT decision, both Project Nos. 24255 and 29042 were rolled into the PUCT Project No. 31972.]

• served as independent evaluator and RFP manager for the Connecticut Department of Public Utility Control’s (“DPUC”) request for proposals for incremental capacity: LEI was retained by the Connecticut state regulator to help realize a legislated mandate to hedge the risks of evolving capacity markets and import constraints through a competitive RFP aimed at securing incremental capacity located electrically in the state of Connecticut. LEI authored a report determining the range of investment needs that could be required in Connecticut over the next 15 years due to localized ISO-NE markets for capacity and forward reserves. LEI then designed a procurement process, including the RFP and associated contracts. The RFP solicited for that capacity from both supply-side and demand-side resources. LEI served as the RFP manager for the process and provided independent evaluation services of the bids and recommending the winning portfolio. LEI also served as the DPUC’s expert witness in the hearings approving the winning portfolio. LEI’s analysis helped the DPUC successfully defend the contracts from legal appeal. [DPUC Docket No. 05-07-14PH2]

• testimony at FERC on market power issues on behalf of intervener in proposed Exelon-PSEG merger per Section 203 of the Federal Power Act: In May 2005, Julia provided direct and supplemental testimony outlining key considerations relating to the potential for adverse competitive effects in light of the proposed merger and recommended additional mitigation measures to cure horizontal market power concerns through independent analysis of merger’s impact on wholesale energy and capacity markets in PJM. [FERC Docket No. EC09-32]
- **prepared MBR authorization:** In the matter of Hawk Nest Hydro LLC acquisition of Hawk Nest-Glen Ferris Hydroelectric Project Julia and the LEI team prepared the MBR Authorization for the FERC filing. [FERC Docket No. ER06-1446-000]

- **testimony regarding confidentiality of long-range supply and demand forecasts by California utilities:** LEI represented the California Energy Commission (“CEC”) staff in a CEC and in a state regulatory proceeding at the California Public Utilities Commission (“CPUC”) in respect of the merits of making public the investor-owned utilities long-range energy and capacity supply forecasts, as part of the integrated resource planning process. LEI served as an independent expert and supported the CEC in successfully arguing for the release of certain information, despite the utilities’ assertions that such data would undermine competitive markets. [CPUC Rulemaking No. 05-06-040]

- **provided testimony regarding the price elasticity of demand for transmission service:** In the context of a transmission rate case for Hydro Quebec TransÉnergie, and consideration of alternative transmission rate designs, Julia led an economic analysis on behalf of Brascan Energy Marketing, Inc. that examined the impact on trade from increased transmission costs, involving multi-factor regression analysis of nodal electricity prices, price spreads across markets, and interchange flows (imports and exports) across borders. Julia also considered the impact of the elasticity of demand for transmission services between Canadian provinces and US markets in the Northeast for maximizing revenues in rate setting. Julia presented oral testimony at the Régie de l’Énergie du Québec. [Dossier R-3549-2004]

- **served as Independent Monitor in a multi-state renewables solicitation process:** Julia was part of a consortium that served as the Independent Monitor for PacifiCorp’s renewable solicitation process for the 2008R-1 solicitation process for additional renewable power supplies. The Independent Monitor reported to the Utah Public Service Commission (“Utah PSC”), but filings were also made with the Oregon regulator. This process included review and assessment of the solicitation process, documents, and modeling methodologies; valuation of the bidder pre-approved process; development of review criteria, monitoring, auditing, and validation of bid evaluation process; bid evaluation; contract negotiation. [Docket No. UM1368]

- **monitored power procurement processes for Connecticut Light & Power:** The Department of Public Utility Control retained the services of LEI to assist the DPUC in monitoring the power procurement processes for Connecticut Light & Power’s (CL&P) Transitional Standard Offer auction in November 2004 for services in 2005 and 2006, and once again selected LEI in September 2005 to monitor the November 2005 auction for services in 2006. Julia led LEI’s team in providing advisory services to the DPUC, including guidance on communications protocols, design of sales contract agreement (between CL&P and winning bidders), and also valuation of final bids vis-à-vis the forward market alternatives available to the utility. In November 2004 and 2005, Julia filed an affidavit after completion of the
procurement process, which the Commissioners used to approve the process and the contracts between CL&P and the winning bidder. [DPUC Docket No. 03-07-18PH02]

- performed market power analysis: Bear Swamp Power Company LLC (a pumped storage generation unit) asked LEI to perform a market power analysis in conjunction with Bear Swamp’s application for market-based rate authorization. A similar study was done for Carr Street Generating Station L.P., Erie Boulevard Hydropower L.P., Brascan Power St. Lawrence River LLC, and Piney and Deep Creek LLC. [FERC Docket No. ER05-639 et al.]

- prepared expert testimony related to horizontal market power considerations: In support of various acquisitions by IPPs spanning many years, Julia has prepared expert testimony for filing with FERC, related to Market-based Rate Authorization applications, Triennial Reviews, and Section 203 (merger) applications. LEI has a 100% track record in getting its clients’ applications for market-based rate authority and/or mergers approved by FERC.

Market design work

- retained by the Massachusetts Attorney General’s Office (“MA AGO”) to evaluate wholesale market design efforts by ISO-NE to address fuel security/winter-time energy reliability issues: LEI staff assisted the MA AGO in 2018 to evaluate the problem statement, and the market design fixes being proposed by ISO-NE staff as well as other NEPOOL market participants. In early 2019, LEI has also made a counter-proposal for an energy storage-based ancillary services product and adjustments to the existing capacity market design. For the remainder of 2019, LEI will support the MA AGO throughout the stakeholdering process and through the submission of the application for rules, changes with FERC in 2019.

- prepared an independent white paper reviewing the merits of various expert’s positions with respect to re-design of the competitive retail market in New York and imposition of price caps on competitive retail providers based on the embedded costs of incumbent utilities: LEI staff, led by Julia, reviewed the competition-related testimony of various experts in the retail case proceeding before the NY PSC and provided an independent critique of the substantive arguments (and flaws thereof). LEI concluded that certain experts misdefined the market for competitive retail services, and misapplied standard concepts in competition theory and anti-trust policy. LEI proposed alternative theories for observed price differences and customer switching trends.

- provided independent guidance to Alberta stakeholders on electricity market reforms in the face of evolving environmental and electricity industry policy: LEI supported the largest independent power producer in Alberta through the initial negotiations around climate change policies, including introduction of a renewable investment program, coal generation settlement, carbon taxation, and design of a capacity market. More recently, LEI has been involved in nearly two years of industry consultation and stakeholdering on what kind of capacity market design to introduce in the Province. LEI staff work closely with several
industry participants and have presented at AESO-led working groups on a variety of issues, including the setting of the demand curve, and market power rules and regulations.

- **prepared a White Paper to identify and debunk the myths about transmission investment and prove the truth with real-world case studies.** In order to offer a more accurate portrayal of the need to invest in transmission infrastructure, the White Paper concluded with recommendations for practical and feasible improvements to the process of evaluating transmission projects. The paper is publicly available at www.wiresgroup.com.

- **advised private clients on the intersection of state and Federal policies in wholesale market rules and specifically MOPR-related issues in organized capacity markets:** LEI modeled the latest proposals from PJM and stakeholders on its evolving MOPR design, and compared and contrasted the rules with ISO-NE’s FERC-approved solution for dealing with investments mandated by state policy (e.g., CASPR). LEI advised clients on FERC strategy and discussed opportunities for existing resources to enhance end-of-life economics via the CASPR.

- **presented to the NY Public Service Commission (“PSC”) regarding NYISO’s proposed changes to the energy market to include social cost of carbon:** LEI advocated in committee meetings for neutrality of treatment between imports and local resources in setting of the carbon bidder.

- **conducted an empirical analysis of market design change to the Forward Capacity Market to align with states’ clean energy initiatives:** Specifically, LEI examined the Competitive Auctions with State Policy Resources (“CASPR”) proposal from ISO-NE. The CASPR proposal involves adding a second or “substitution” auction to the current Forward Capacity Market (“FCM”) framework. LEI examined the fundamentals for this substitution auction and integrated it within the Contractor’s overall FCM model. LEI evaluated the financial incentives for incumbent (existing) resources to remain in operation versus the financial incentive to retire (and therefore, the bidding strategy of these resources). LEI considered critically the tradeoffs that existing generators will be making in the face of the substitution auction, including the opportunity/risk of continuing to operate versus the opportunity/risk of submitting a retirement bid and participating in the substitution auction.

- **performed economic advisory in a matter relating to market design strategy for a large Canadian generator:** LEI performed a case study-oriented comparative review of energy-only and energy and capacity markets in North America and abroad, with lessons learned from other jurisdictions. LEI’s work plan called for the simulation modeling of three forms of market design: an energy-only market, energy, and capacity market, akin to Eastern US RTO markets, and a hybrid market with long term contracts and a spot market for capacity. The third phase involved the creation of a customized tool for future analysis, based on the simulation modeling results.
• **provided expert insight on capacity performance schemes, on behalf of NEPOOL:** LEI was retained by NEPOOL to provide expert insight into the proposed Performance Incentives scheme for ISO New England’s Forward Capacity Market. LEI considered the implications for generators’ risk profiles and, ultimately, the costs to consumers. LEI’s report was filed with FERC as part of the Jump Ball filing.

• **advised client on electricity capacity product:** LEI advised the California Energy Commission and other stakeholders on the design and development of a web-based software system supporting the trading of an electricity capacity product tracked by state regulators in connection with resource adequacy requirements. LEI analyzed similar systems in other jurisdictions, defined potential core functionalities of the California system – including, for example, posting of bids and offers. The engagement also required LEI to track titles, examine bilateral and/or multi-lateral trades, and compliance reporting. LEI conducted a survey of industry participants to identify required and desired system capabilities.

• **market design in support of electricity sector restructuring in Greece, specifically consideration of alternatives to physical divestiture of generation assets:** On behalf of PPC, the government-owned vertically integrated national utility, LEI examined the following options: virtual power plant (“VPP”) auctions, contract for difference (“CFD”) and physical energy swaps. In the case study format, the various options were compared against the following criteria: instrument objective, contract structure, contract terms, sale platform, settlement structure, and the extent of physical control right transfer. Real-world experience from France, UK, Belgium, Denmark, Netherlands, Australia, and Alberta (Canada) helped shape the discussion of comparative advantages and disadvantages, taking into account the unique concerns for Greek policymakers.

• **conducted modeling and forecasting related to the Alberta government’s recent announcements to transition to a capacity market and continue meeting its carbon emissions reduction plans:** as part of this engagement, LEI developed several scenarios that evaluated the impact of various policy and market-related changes in the Alberta market on incumbent and new generators in the province. These changes included market design (energy only or energy & capacity market), plants’ retirements/repowering plans, varying carbon tax regimes, and different renewable investment targets. Results from these scenarios were designed to identify specific operational and regulatory risk for the client and develop a strategic best-response to optimize the client’s portfolio in light of these uncertainties.

• **advised on Strawdog related to the estimation of market harm:** LEI was retained by a market participant in Alberta to develop comments on MSA’s Strawdog for the Framework for the Assessment of Market Harm. More specifically, LEI was asked to comment on the economic issues associated with the proposed Strawdog pertaining to the definition of harm in the context of Alberta’s market design and the impact of the implementation of the
Strawdog on wholesale power market design, market manipulation and market power abuse.

- **conducted a capacity market modeling exercise to evaluate the potential impacts of different resource adequacy mechanisms:** LEI was engaged by a major US utility where the objective of the study was to identify a market design that would provide the maximum profits at the lowest possible risk, including market and regulatory risk. LEI modeled market prices, market revenues, and gross profits under three supply-demand scenarios and tried to simulate the impact of market intervention policies on such market revenues in order to understand the potential risks and benefits to the client’s baseload fleet under different market designs.

- **provided economic advisory on market power mitigation tests for a large US-based utility:** LEI consulted on market design features related to a proposed nodal market, including most significantly the market power analysis framework. LEI proposed a strategy and is assisting in the development of an implementation framework for the local market, including prepared reports for the market design team and state commission. In addition, the approach will be proposed for federal review at FERC.

- **conducted review of capacity market rules:** DECC was interested in whether US power markets evaluate generation bids based on criteria other than the price bid, specifically, if the length of the contract had a role in the auctions. LEI reviewed capacity market rules for PJM, ISO-New England, and the New York ISO. LEI also examined whether and for how long a "lock-in" option for the first-year capacity price is offered to new generation assets bidding into the auctions. LEI also reviewed international spectrum auctions, North American gas transmission open season rules, and international auctions for toll roads to examine whether and how duration or length of contract is incorporated into bidding rules and auction clearing processes.

- **provided a comprehensive analysis of the proposed market power mitigation measures for Alberta’s electricity market for a major utility:** Julia and her team looked at various scenarios and presented the likely outcomes given various generation portfolio configurations under each proposal and whether these mitigation measures will result in the desired results. Led by Julia, the LEI staff made a case that more rigorous and robust approaches are needed than the proposed measures. Additionally, Julia’s team conducted a comparative analysis of the procurement processes and compensation schemes of the different ancillary services products in eight markets, namely: New York, New England, Pennsylvania-New Jersey-Maryland, Texas, UK, Alberta, Australia, and Ontario. The results of this analysis were used to support the client in Alberta’s stakeholder process to redesign a system operator’s procurement process.

- **authored paper on a virtual power plant auction format:** Julia and the LEI team prepared a white paper outlining the concept of a Virtual Power Plant product and auction format, as part of a multi-consultant engagement in support of restructuring of the Greek power sector.
• prepared and filed testimony and quantitative analysis on questions of market definition and market integration: In June 2005, Julia participated on a panel discussing market monitoring issues, as well as market power safeguards for wholesale electricity markets. In 2004, she also provided testimony on pricing safeguards proceeding, which looked at alternative market power testing procedures for market power, analyzed implications on investment, and discussed efficiency consequences of certain bidding behavior.

Electricity and Natural Gas Asset Valuation and Transaction Advisory Work

• valuation for a cogeneration project: LEI assisted a private equity firm with valuation of a large urban cogeneration facility in the Northeast US. LEI developed a dispatch profile and calculated all electricity, steam, environmental, and maintenance revenues and costs to determine the gross margins of the plant for the next 20 years; LEI’s analysis was prepared for purposes of independent asset valuation.

• analyzed opportunity for a transmission tariff rebate based on going forward financial viability of a customer: LEI was engaged by Emera Maine, a transmission utility in Maine, to assess the financial viability of a customer to continue to operate several power plants in coming years with and without a transmission tariff rebate. LEI’s analysis supported public discussions regarding the transmission rebate and a FERC filing by Emera Maine.

• prepared a tutorial on power markets: For a client looking to acquire an asset in New York City, LEI prepared a tutorial on power markets tailored specifically to market rules and market drivers of electricity, capacity, and ancillary services markets in the city.

• assisted with the evaluation of an investment in a new gas-fired power project in Alberta: LEI created a Baseline forecast for the Alberta market to allow the client to evaluate the energy & capacity market dynamics in the Province, which was paired with detailed reporting for the financial and operational details for the client's project. Also, LEI created two sensitivities to assess the upside and downside opportunities.

• conducted due diligence of a potential asset acquisition in MISO-South: LEI reviewed the contracts and financial analysis, with a specific focus on the assumed market value of capacity in the long term, and locational marginal prices for energy. LEI also reviewed certain contracts and supporting materials, and participated in due diligence calls.

• retained by large private equity firm to present a market overview of the markets where it owns generation assets: These markets include PJM, New York, New England, ERCOT, and SERC. In addition to this, LEI presented an investment opportunity presentation to senior management.

• consulting services and forecasts related to avoided energy supply costs: LEI conducted an empirical analysis of proposed key New England wholesale electricity market design change to the Forward Capacity Market, which included long term modeling of the New
England energy and capacity markets. Specifically, LEI examined the Competitive Auctions with State Policy Resources (“CASPR”) proposal from ISO-NE. The CASPR proposal involves adding a second or “substitution” auction to the current Forward Capacity Market (“FCM”) framework. LEI examined the fundamentals for this substitution auction and integrated it within the Contractor’s overall FCM model. LEI evaluated the financial incentives for incumbent (existing) resources to remain in operation versus the financial incentive to retire (and therefore the bidding strategy of these resources). LEI considered critically the tradeoffs that existing generators will be making in the face of the substitution auction, including the opportunity/risk of continuing to operate versus the opportunity/risk of submitting a retirement bid and participating in the substitution auction.

- **research paper demonstrating best practices for measuring the benefits of transmission** for a WIRES-funded research project, LEI prepared a “how-to” guide and demonstrated its application on two hypothetical transmission projects, showcasing how system planners and other decision-makers can measure objectively the benefits of transmission investment from the perspective of various stakeholders, and also over the short-medium- and longer-term.

- **conducted empirical analysis of key features of proposed capacity markets in Alberta and Ontario**: LEI assisted the client in understanding the capacity market design initiatives across Canada. LEI staff presented a series of work paper on various topics, related to market mechanics and resource adequacy and setting of the demand curve. LEI also assisted the client in critical evaluation of design options from the perspective of the existing generation fleet, new entry, and consumers through detailed quantitative modeling and simulation-based analysis of the target markets.

- **advised a major utility in Canada in its call for tenders strategy for procuring firm capacity over a long term horizon from neighbouring jurisdictions**: Julia evaluated the opportunity for purchasing capacity from interconnected jurisdictions and devising a procurement that would efficiently overcome seams issues and market design issues that attach different counting and valuation methods for capacity across jurisdictions.

- **devised an innovative approach for evaluating the economics, environmental, and siting costs and benefits of transmission (and generation investment) for the California Independent System Operator**: building upon the traditional economic framework for cost-benefit analysis, the LEI team devised an approach to quantitative value the expected net benefits from various infrastructure projects, taking into account market uncertainties as well as the classic deregulated market coordination problem of planning for transmission give uncertain generation investment and vice versa. A scoring technique for environmental permitting and siting issues was also developed in order to quantify the potential impact of the proposed project on the local environment and economy, as well as to measure the impact of such factors on the project timetable and eventual net benefits to society. Real option techniques were also considered in this engagement to assess the
potential value of uncertainty and the benefits of delaying various investment strategies. The methodology was also expanded to handle the potential to evaluate numerous competing projects, in recognition of the fact that transmission and generation investments (and other potential investments) could be both complements and substitutes.

- **served as Independent Examiner for Western Interconnect transmission line:** LEI was selected by developers of the Western Interconnect transmission line in New Mexico to serve as Independent Examiner for their Open Season process, through which WI offered transmission capacity over the line to any interested party at the same rates, terms and conditions as those offered to anchor customers on the line. LEI designed and managed the entire process, which included creating the evaluation criteria, drafting announcements and press releases, preparing the Open Season documents and forms, conducting information sessions, overseeing the process website, and evaluating and ranking bids. After the process, LEI prepared and submitted a report to FERC (in docket ER15-2647), attesting that the process was market-driven, fair, transparent, and non-discriminatory.

- **capacity price review on auction bidding:** The UK market regulator was interested in whether US power markets evaluate generation bids based on criteria other than the price bid, specifically, if the length of the contract had a role in the auctions. LEI reviewed capacity market rules for PJM, ISO-New England, and the New York ISO. LEI examined whether and for how long a "lock-in" option for the first year capacity price is offered to new generation assets bidding into the auctions. LEI also reviewed international spectrum auctions, North American gas transmission open season rules, and international auctions for toll roads to examine whether and how the duration or length of the contract is incorporated into bidding.

- **provided independent market analysis to clients interested in understanding the implications of the expansion of natural gas supply into New England:** LEI began with a review and evaluation of the numerous proposals for pipeline expansions. LEI staff also performed natural gas network modeling (using GPCM, an industry-standard network model of the North American natural gas system) and power simulation modeling (using LEI's proprietary POOLMod model) to arrive at a quantitative impacts assessment of various projects on the Northeast gas markets and electricity markets.

- **conducted cost of electricity comparisons across Canada:** LEI was engaged by a consortium of private companies to estimate and compare the delivered cost of electricity for all Canadian provinces over the 2011-2015 timeframe: In addition, LEI also forecasted how the delivered cost of electricity in Alberta could develop over the next fifteen years (2017-2031) under the Climate Leadership Plan ("CLP"). LEI forecasted energy, transmission, and distribution rate components, using three modeling scenarios in addition to a Base Case, evaluating different assumptions for renewable investments, demand levels, and reserve margin targets. The Base Case and scenarios were designed to inform the general public about the impacts of various policy and market based interventions on the delivered cost of electricity to consumers in Alberta in the future.
• **conducted gas price forecasting:** For a private equity client, LEI forecasted the energy and capacity revenues of various gas-fired plants in PJM for 20 years. More specifically, LEI projected the energy and capacity prices, plants’ annual generation, load factor, and operating costs. LEI’s analysis influenced the client’s going forward investment decisions.

• **price forecasting for wind facilities:** LEI analyzed the revenue potential for wind facilities in CAISO, SPP, and PJM, developing price forecasts through 2045 and also assessing market rules to identify any potential penalties that may apply to intermittent generation and deviations from generation profiles. Three cases of merchant forecasted revenues, Base Case, High Case, and Low Case, were developed in order to identify key uncertainties and opportunities.

• **served as Independent Examiner for a proposed merchant transmission project’s Open Solicitation process:** The project entailed designing the solicitation process, meeting with potential shippers on the line to garner early interest, drafting announcements and press releases, conducting information sessions, updating the solicitation website, evaluating and ranking bids, assisting with bilateral negotiations with shippers, and submitting a report to FERC as part of the developers' Section 205 filing.

• **conducted independent analysis on power market in support of transmission development:** LEI supported a major transmission developer in the Northeast US in its analysis of opportunities and market impacts from a number of potential projects to bring energy into the New England region. LEI performed independent analysis measuring the impacts of numerous project designs on the power market (including energy and capacity markets, production cost savings, and environmental benefits) and local macroeconomic analysis as well.

• **retained by private equity firm to provide 20-year monthly energy and capacity prices and operating metrics results for several CCGT plants in PJM:** LEI reviewed plant parameters, financial model, and market consultant reports provided by the seller and delivered price forecast and dispatch results to the client.

• **conducted New England modeling:** LEI conducted an empirical analysis of New England wholesale electricity market dynamics, including long term simulation based on the New England wholesale market to measure energy and capacity market impacts, production cost savings, generators profitability under various future market conditions. The client used LEI’s modeling results to perform policy analysis and prepare a research report that the client released publicly in 2017.

• **Alberta market analysis:** For a major stakeholder in Alberta, LEI conducted empirical analysis to identify how a change in offer behavior of some resource owners affected spot and forward markets in Alberta. LEI developed two separate econometric models (a time-series analysis for spot, and a panel (or a cross-sectional time-series) regression for forward markets) to estimate the price impacts from the change in the offer behavior, lost value in wholesale markets, and foregone revenues for key market participants. The engagement
also involved a detailed analysis of historical offer bid data to determine when the offer behavior changes occurred, and an analysis of select Alberta power plants’ financial losses due to uneconomic offer behavior.

- **conducted wind price forecasting:** LEI used its proprietary dispatch model, POOLMod, to project energy prices in ERCOT for a wind developer undertaken financing of its projects in West Texas. LEI also examined the implications of PPA related to the two wind farms. LEI also provided energy, capacity, and solar renewable revenues for an operating solar plant in New Jersey as part of the same engagement.

- **reviewed energy storage installations in New England:** For a transmission and distribution company in New England, LEI analyzed the cost and benefit to consumers on different configurations of energy storage installations in the ISO-NE grid. The engagement involved modeling multiple configurations of energy storage solutions, including different storage capacity and duration, as well as various charging and discharging cycles.

- **developed a simulation model for forecasting ancillary services revenues:** The engagement involved analyzing the dynamics of ancillary market prices and revenue under different market scenarios. The model developed was able to simulate hourly dispatch and clearing of the ancillary services market, and was integrated with LEI’s Alberta energy market model.

- **reviewed trading activities within energy market:** On behalf on an electricity marketer, LEI liaised with the NYISO Market Monitoring & Analysis (MMA) department in respect of trading activities in the energy market.

- **serves as Independent Examiner for a proposed merchant transmission project open solicitation process:** The project entailed designing the solicitation process, meeting with potential shippers on the line to garner early interest, drafting announcements and press releases, conducting information sessions, updating the solicitation website, evaluating and ranking bids, assisting both bilateral negotiations with shippers, and submitting a report to FERC as part of the developers’ Section 205 filing.

- **performed analysis of HVDC transmission projects:** LEI was retained by a transmission developer to perform a high-level analysis of the cost-competitiveness of HVDC transmission as a regulated solution with respect to generation resource. The work included comparing the revenue requirement for HVDC transmission projects with the net Levelized Cost of Entry (“LCOE”) of comparatively sized and located generation resources.

- **advised on New York transmission project:** LEI provided advisory service to a transmission developer looking to position its project in New York. LEI provided an overview of the current regulatory and legislative framework and assisted in identifying and targeting potential shippers on the line.

- **provided analysis on new HVDC transmission line:** Julia Frayer led an LEI team that provided strategic support and analysis of various regulated and unregulated business
models for proposed new HVDC transmission line, including identification of potential shippers and RFP opportunities, as well as categorization of potential private and social benefits of the project

- **advised on climate change policy in Alberta:** LEI provided research, analytical and advisory support to a client in Canada as the Alberta government implemented its climate change policy, which will shut down coal plants early, ramp up renewable generation, and put province-wide carbon tax in place.

- **assisted a client to perform the competitive landscape analysis for projects participating in the Clean Energy RFP:** LEI’s competitive landscape study employed a three-step approach. At Step I, LEI identified the potential projects that can qualify for the Clean Energy RFP and the production of a matrix of competitors. The comparative analysis then graded each project from Step I, using the type of criteria listed in the evaluation and selection process section of the Clean Energy RFP. In summary, LEI’s comparative analysis looked at both the (a) minimum threshold requirements and (b) the characteristics of each project relative to the quantitative and qualitative benefits enumerated in the Clean Energy RFP. Lastly, based on the rankings from the comparative analysis in Step II, LEI concluded with the SWOT analysis for the client’s project relative to possible competitors and examined the relative strengths, weaknesses, opportunities, and threats in the Clean Energy RFP.

- **provided a 20-year market outlook report for New England:** The market outlook report was to include a 20-year regional price forecast for the energy and capacity markets, summary of recent market developments, comparison of monthly and peak versus off-peak prices, and a Tier-1 Renewable Energy Credits (“RECs”) forward price forecast.

- **reviewed NYISO due diligence materials:** For an infrastructure investment fund, LEI reviewed due diligence materials for the client’s potential acquisition of a cogeneration plant participating in the NYISO markets. LEI further performed an analysis to forecast future fuel and operating costs for the plant, revenues from the sale of energy and capacity in the wholesale markets, and revenues from the sale of steam to an off-taker.

- **analysis of congestion in the New York market:** For a transmission project developer, LEI performed an analysis of congestion in the NY markets for proposed renewable generation resources as well as a new transmission link. LEI relied on results from a power flow study to properly model the proposed resources and transmission constraints in POOLMod.

- **analyzed the impact of a new transmission project between upstate and downstate New York:** LEI used its proprietary energy and capacity market simulation models to assess the impact of the proposed transmission line on New York energy and capacity markets over a 20-year horizon. LEI further prepared a forecast of revenues for potential shippers from the results of the simulations.

- **supported a risk management assessment:** LEI assisted in a large provincial institution in the development and assessment of alternative risk management and investment strategies for its trading and investment businesses. As part of this work, LEI completed a Risk
Assessment Survey of the Board of Directors as well as additional Value-at-Risk ("VaR") modeling, scenario, and stress testing.

- **conducted New England gas price forecasting**: LEI was retained to forecast delivered gas prices in New England (Connecticut) and PJM (New Jersey) and locational marginal prices as well as retail electricity prices in Connecticut.

- **engaged by an investment firm in association with its acquisition of a proposed natural gas-fired plant in Ohio**: Work involved asset valuation, due diligence support, and market analysis. LEI reviewed the documents in a virtual data room, and performed analysis related to drivers of gross margin for the asset: macroeconomics, fuel, and electricity cost projections, and overview of gas and electricity market in the region where the asset was located.

- **led a workshop to review New England markets**: LEI was hired by a New England transmission & distribution utility to prepare a two-day workshop for company executives detailing the current state of the New England markets, major players across all sectors of the industry, major investment drivers and investment analysis methodology. LEI staff prepared workshop material and traveled to the client’s office to present the material and answer client’s questions.

- **conducted price driver analysis on the gas-fired asset**: LEI was engaged by a private client to conduct a price driver analysis and strategy optimization exercise to enhance the bidding and dispatch strategy on a jointly-owned gas-fired asset. This included a report on ISO-New England’s Winter Reliability Program to identify and evaluate key wholesale price drivers in the New England region. LEI also examined the generating asset’s financial data to help optimize its bidding strategy.

- **prepared a quantitative analysis to test the efficacy of a proposed cross hedging strategy for a merchant transmission project that will be bringing energy from Canada**: The proposed strategy is to use natural gas futures contracts to hedge energy market exposure and revenues. Analysis will include ordinary least squares regressions as well as an error correction model to determine the appropriateness of the hedge.

- **analyzed revenue/gross margin modules for various district energy assets in Illinois being considered for acquisition**: LEI reviewed information received from the client, including detailed documents in the data room, and presented analysis in a slide deck relating to contract revenues (prices and volumes) and fuel costs (electricity) along with revenue and cost drivers. LEI also presented sensitivity analysis for high/low sales volumes, new customers, expiry dates of existing contracts, fuel costs, etc.

- **provided due diligence analysis and support on the acquisition of a portfolio of small hydropower plants in the PJM region**: The portfolio consisted of a mix of mini and small run-of-river hydropower plants. LEI’s scope of work was threefold. Firstly LEI provided an overview of PJM RTO market, describing market fundamentals, key players, supply mix, retirements, and newly built, as well as discussing historical market trends. Then, LEI used
its proprietary dispatch and simulation cost production model POOLMod to simulate power market dynamics and develop forecasts of energy prices in the assets’ location over a 20-year horizon. As part of this modeling exercise, LEI used its in-house capacity market to develop capacity prices forecasts over a similar horizon. Finally given the conventional storage capability of one of the units, the client requested LEI to provide a description of the frequency regulation market in PJM and to determine potential revenue opportunities for the plant. LEI provided results of its modeling exercise in Excel format and prepared a slide deck summarizing key messages, key findings, and recommendations to the clients.

- **provided due diligence review on New England plant:** LEI worked with private equity investors on an M&A due diligence review of a combined heat and power generation unit in New England. LEI provided market analysis, price forecasting services, and supported the investor in its valuation of the asset.

- **conducted review of Maine hydro facilities:** For an infrastructure investment fund, LEI reviewed due diligence materials for the client’s potential acquisition of a portfolio of hydro facilities located in Maine, and provided an independent valuation of the projects based on forecast energy market dynamics and REC opportunities.

- **reviewed NESCOE Gas Electric Phase Three study:** LEI conducted a comprehensive review of the NESCOE Gas Electric Phase Three study in order to ensure that the appropriate economic models and techniques were being used to accurately model the hydro and gas solutions. LEI also aided the client in identifying any assumptions and modeling approaches which may be suboptimal, and communicated how these issues could be addressed and improved in future studies.

- **asset valuation, due diligence support and market analysis for an infrastructure fund:** The engagement involved reviewing documents in a virtual data room, and analysis related to drivers of gross margin for the asset: macroeconomics, weather fluctuations, fuel and electricity cost projections, and overview of gas and electricity market in the region where the asset was located.

- **conducted market study regarding renewable generation:** Julia led the preparation of a market study to support the financing of a renewable generation portfolio in New England. The market analysis supported a successful multi-million dollar debt raise for the client.

- **developed HHI screens in support of a valuation of a gas-fired facility:** LEI developed simplified HHI screens looking at the summer peak period for a client’s potential acquisition of a gas-fired facility in New York. Several scenarios were developed to test the impact on HHI.

- **conducted evaluation of fair market sales value of a coal-fired unit in Arizona, as required by a lease that expires in 2015:** Results from LEI’s proprietary modeling tool, PoolMod, on market prices and dispatch were used as inputs in the financial model, which used discounted cash flow techniques. Two cases (Base Case and High Case) were created to develop a range of values with a weighted average point estimate. In addition to the
discounted cash flow model, the market approach, which looks at comparable transactions, and the cost approach, which looks at the cost of building the same facility, were considered.

- **provided valuation services for a waste coal facility located in the Pennsylvania-New Jersey-Maryland (“PJM”) regional market**: Specific tasks consist of i) due diligence review of documents such as past financial statements, operational statistics report, fuel agreements and power purchase agreements (“PPA”); ii) forecasts energy and capacity prices in the PJM regional market; iii) create a pro forma financial model to evaluate the market value of the plant as of expiration of its PPA; iv) writing a final report documenting assumptions, methodologies used and modeling results.

- **provided forecasting and modeling support for a start-up company**: Julia and her team assisted Tres Amigas LLC, a start-up company on the revenue forecasting and modeling for the second stage financing. The start-up company aims to develop, own, and operate a unique three-way AC/DC transmission facility located in New Mexico. In 2010, for the feasibility analysis stage, LEI provided extensive transmission evaluation, financial modeling, price forecasting, and market analysis for the markets, including the Arizona/New Mexico/Southern Nevada sub-region of the Western Electricity Coordinating Council, the Electric Reliability Council of Texas, and the Southwest Power Pool. LEI’s analysis support over $15 million of development stage funding. LEI continues to serve as economic advisor to Tres Amigas, as it seeks debt and equity financing to support construction of Phase I.

- **market power analysis as a result of a proposed merger**: in support of a client’s opposition to a proposed utility merger in the Northeast US, LEI provided a white paper analyzing the impact of the merger on competition. The white paper covers analysis on buyer market power concerns with utility’s returning to rate base generation and vertical market power.

- **conducting forecasting for electricity generation assets in New England**: Using LEI’s proprietary simulation model of electricity wholesale markets in ISO New England, LEI forecasted future cash flows for a portfolio of electricity generation assets and applied the net present value analysis to evaluate the portfolio’s economic value under different potential future market conditions. This analysis supported the investment fund’s decision to acquire and hold the generation portfolio's distressed debt.

- **led research on biomass plants regarding renewable energy revenue options**: Julia investigated opportunities for portfolio of biomass plants to earn renewable energy revenues from RECs, capacity markets, and carbon offsets given regulations in all states belonging to MISO, PJM, and ISO-NE. Engagement also involved formulating strategies for client to optimize the generation assets’ revenue potentials by exploiting the identified renewable energy opportunities.

- **analyzed potential revenues of pumped storage hydroelectric facilities (energy, capacity, ancillary services) proposed in various locations in ISO-NE and NYISO**: The analysis
included detailed simulations of the wholesale electricity markets, application of sophisticated statistical tools to estimate the volume and the price level of various ancillary services.

- **assisted a major Canadian renewable power company in its economic valuation of a New England based renewable company, prior to acquisition**: Work involved due diligence, analyzing the revenue potential of the potential acquiree’s assets over the 2009-18 period across all major ISO-NE product markets, and separately analyzed the market power implications of the acquisition in preparation of a potential FERC application, including analysis of market power issues in ancillary services market.

- **evaluated potential value of assets available under various regional auctions for a dominant IPP player**: Julia worked with the client in composing a bid proposal by assessing market risks posed by various factors, such as fuel price shifts, merchant plant construction scenarios, site conversion potential, and transmission constraints and through extensive production cost modeling.

- **conducted an indicative valuation of a proposed new transmission line, known as the International Transmission Line**: LEI forecasted the revenues associated with the project and combined this revenue forecast with the estimated costs of the project to arrive at an estimate of the net present value of the project and return on investment.

Power, Gas, and Infrastructure Sector Business Development and Strategy

- **strategic analysis of the value of on-site peakers for an Alberta industrial client**: LEI was engaged by an industrial client in Alberta that was considering the addition of on-site gas peakers. LEI’s scope of work consisted of identifying potential technology type candidates that would suit the client’s needs, reviewing historical and projected site loads, developing a status quo estimation for the cost of delivered power rates, and finally creating a relative economic model that compared the use of on-site generation against the status quo.

- **portfolio optimization strategy**: LEI was engaged by a Canadian client to explore options associated with entering into a service agreement with a third-party. LEI prepared a report which identified a number of firms that could provide this service and provided a more detailed profile of the firms which best meet the requirements of the client. LEI also acted as an independent advisor to guide the client through a process of potentially contracting with a third-party service provider.

- **conducted Total Factor Productivity study**: In December 2014, LEI prepared a report for Ontario Power Generation (“OPG”) entitled “Empirical Analysis of Total Factor Productivity Trends in the North American Hydroelectric Generation Industry.” The purpose of this report was to share findings from LEI’s TFP study, which estimated TFP trends for a select group of peers from the North American hydroelectric generation industry. Data for this study covered an eleven year period from 2002-2012. The purpose of
this new engagement is to update this study for newly available data (encompassing operating costs and other statistics for calendar years 2013 and 2014).

- **performed a forward analysis and market simulation of potential wholesale revenues for a proposed wind project in Wyoming**: analysis was used by developer to attract potential counterparties for a long term PPA.

- **conducted a comprehensive cost-benefit analysis of a proposed transmission project in New England using simulation-based analysis of the ISO-NE wholesale power markets**: LEI’s analysis included detailed examination of the benefits to consumers from lower energy and capacity prices, as well as emissions reductions and local economic impacts (associated with spending during construction and lower retail costs of electricity).

- **conducted a Non-Transmission Alternatives (“NTA”) analysis for the two transmission projects, which are components of a larger transmission solution in New England**: The objective of the NTA analysis was to determine the feasibility and viability of other non-transmission resources – such as new generation and new demand-side resources – to be developed in lieu of these two specific transmission projects to relieve transmission reliability concerns. The NTA analysis was to be filed as part of the client’s application with the Connecticut Siting Council. [Docket N5179515].

- **supported a client in administering its compliance program**: For all the US regions where the client (international IPP) is currently active, LEI was engaged to support the client’s Regulatory Group in its administering of the company’s compliance program. LEI provided a monthly report covering developments by regional market and products which included: energy, capacity, long-term transmission service, FTR auctions, ancillary services, diesel oil, PRB coal, natural gas commodity, transmission, and storage, RECs, and CO2. The purpose of this monthly update was to ensure that client’s transactional and business groups were made aware of market rules and regulatory risks.

- **provided due diligence support**: LEI was engaged by a private equity company in association with asset valuation, due diligence support, and market analysis for a wind generation and HVDC transmission project proposing delivering wind-based renewable energy from Wyoming into California.

- **authored report on pollutants emissions**: LEI was hired by a large Canadian IPP to prepare a report providing an overview of past and current initiatives pertaining to pollutants emissions regulation with the purpose to inform the potential paths forward for future carbon regulation in the US. The engagement was initiated following the Executive Office of the President released the President’s Climate Action Plan (“CAP”) to reduce greenhouse gas (“GHG”) emissions, and to prepare for the impacts of climate change. Under this engagement, LEI performed a detail literature review of the President’s directive, past Environment Protection Agency (“EPA”) regulations, as well as exiting regional carbon reduction programs. The overarching purpose of this exercise was to estimate the potential shape of a future carbon rule in the US (with associate features such as timing, mechanisms,
and regulatory framework) based on EPA’s legal authority scope, procedures and lessons learned from failed or successful rules implementation. LEI identified various market-based and non-market-based regulatory frameworks/scenarios and ranked them on their relative likelihood based on a set of established criteria including affordability of the regulatory scenario, impact on generation retirement and system reliability, alignment with EPA’s precedents, congruency with Presidential directives, consistency with EPA’s jurisdiction, and political palatability.

- **evaluated the impact of the implementation of potential future Federal regulation limiting carbon emissions on ERCOT's energy markets and on Energy Future Holdings' ("EFH") portfolio**: For a large Canadian IPP, LEI used its dispatch and simulation model POOLMod to develop forecasts of energy prices in ERCOT under a variety of potential frameworks under which carbon emissions could be regulated. The purpose of this exercise was twofold: a) evaluate the impact of a carbon rule (of any shape) on wholesale energy prices, and on the performance of the EFH’ portfolios; b) determine the most impactful carbon rule regulatory framework.

- **conducted New York price forecast**: LEI was retained to do a 30-year (2015-2044) energy price forecast for Western New York, capacity price forecast for the Rest of the State, and revenue forecasts for a small hydroelectric plant in preparation for an asset sale process.

- **assisted an Ontario electricity generator in performing a productivity study on their hydroelectric assets to fulfill the mandate of the Ontario Energy Board ("OEB")**: LEI proposed a structured approach to address how productivity should be measured, what methods are available, identify a relevant peer group, and ultimately provide the client with a productivity study for filing with the OEB.

- **reviewed client’s risk management practices and provided meaningful insights with regards to the risk management related issues**: Analysis included quantification of the magnitude and probability of risks being faced by trading and other operational activities of the client, as well as research into the best practices of other similar organizations.

- **engaged by a global investment firm to provide a market outlook for three assets located in ERCOT**: LEI provided a 10-year detailed market revenue forecast for the three plants under base case assumptions.

- **provided independent review and assessment of cost-benefit analysis related to termination of certain PPAs between Entergy Texas Inc. and Entergy Louisiana**: LEI’s assessment was requested by the Public Utility Commission of Texas, as follow on to previous consultative services that LEI has provided.

- **served as Independent Evaluator ("IE") for Pacific Gas & Electric Company ("PG&E") for PG&E Electric Fuels Department’s Natural Gas Storage Services Request for Offer ("RFO")**: Specifically, LEI worked with PG&E to ensure that Offers were evaluated consistently and appropriately in accordance with the solicitation protocol and in
accordance with applicable rules and processes of the California Public Utilities Commission ("CPUC").

- **preparing a study of the Value of Lost Load ("VoLL") in ERCOT and evaluated current utility practices for manual load shedding**: LEI’s report on VoLL was filed with the PUCT in June 2013 under PUCT Docket 40000.

- **engaged by a Japanese research institute to research the environment for investment and financing of new generation in the US competitive electricity markets as well as the types of approaches used to manage investment risk**: The LEI team researched the impact of market restructuring in the US on generation investment, methods for financing new generation, and analyzed policies promoting generation investment. LEI also performed four case studies on projects that were successfully financed and built in recent years, including assets in California (CAISO), Maryland (PJM), New York (NYISO) and Texas (ERCOT).

- **provided support to FortisAlberta Inc. ("FAI"), a Canadian electricity utility, in its filing for its capital tracker application with the regulator**: LEI reviewed the submissions of the interveners and advised FAI on how to address the issues raised by these interveners.

- **led a comprehensive ratepayer-focused cost-benefit study of integrating a remote service territory of a single-state utility into a Northeast RTO’s footprint**: The cost-benefit analysis looked that at the long-run the benefits of joining an RTO versus the costs of new infrastructure that would be needed to accomplish the integration. LEI’s analysis was used with regulators and state policymakers to pursue a transmission investment strategy by the utility.

- **provided a study on electricity sector unbundling in the US for a Japanese client**: The study starts with an overview of the electricity sector unbundling in the US, including the history of restructuring and unbundling efforts, the categorization of unbundling, and the organizational impact of unbundling. Three case studies were also provided on specific unbundling experiences of TXU Corp., Commonwealth Edison, and Consolidated Edison.

- **supported the negotiation of fuel supply and energy sales agreements for a biomass to energy facility**: In particular, LEI’s analysis focused on the appropriateness and risk associated with price and cost escalation factors. Reviewed similar power purchase agreements and analyzed a suite of available indices.

- **counseled on transmission cost allocation**: LEI advised Maine Public Utilities Commission on methodologies for transmission cost allocation by comparing and contrasting alternative planning approaches and pricing models employed within the US and one international jurisdiction, the United Kingdom. The final report provided a ‘strawman’ recommendation for an effective cost allocation methodology, which was used by the Maine PUC to guide it in its filings at FERC related to Order 1000 and the preceding NOPR on the same issue.
• **served as Independent Monitor for Energy New Orleans**: Julia acted as manager for LEI’s engagement with the City of New Orleans. LEI was engaged to act as the independent monitor for Entergy New Orleans’ solicitation of a Third Party Administrator to implement and deliver conservation and demand management programs on behalf of the utility. LEI provided guidance to Entergy and the City on the development of the request for proposals, including mandatory requirements and commercial terms. LEI oversaw the bid receipt as well as the review and selection process. A final report was provided outlining LEI’s opinion as to the fairness of the overall process.

• **assisted a client with certain matters pertaining to a FERC investigation**: Specifically, the scope of this retention includes economic and market analysis in support of a market participant in ISO New England’s day-ahead load response program (“DALRP”). Julia also provided affidavits and deposed in connection with FERC investigation of behind-the-fence industrial generator and participation in a wholesale power market in New England. Julia helped the client to respond to assertions of market manipulation and estimate market benefit provided through its participation in demand response program.

• **advised a major transmission company on financial implications of proposed new 400kV transmission line to New York City and Connecticut**: LEI analyzed the impact of new transmission, assuming it delivered 100% carbon-free energy, on electricity prices and emissions levels in New York and New England.

• **served as an independent economic expert, opinion on specific matters related to a market participant’s participation in the day-ahead demand response program implemented by ISO-NE**: LEI staff reviewed the specific facts of the case related to how the customer baseline was developed and the offering strategy of the market participant in the demand response program. LEI conducted an independent analysis of the decision making process that had been undertaken in support of the customer baseline and offer strategy. LEI also prepared an analysis of the market benefits created for the market as a whole through the demand reductions offered by the market participant (a customized VBA model was created to reconstruct day-ahead (“DAH”) and real-time (“RT”) energy market clearing prices using public historical hourly offer and bid data.

• **supported a client in preparing an offer to provide new capacity**: LEI evaluated projects submitted in the context of a competitive solicitation (RFP) for new capacity, aimed at reducing Connecticut consumers’ Federally Mandated Congestion Charges (“FMCC”). LEI drafted and administered the RFP. LEI then served as an independent evaluator on behalf of the DPUC and performed a comprehensive evaluation of the proposed projects, using LEI’s proprietary production cost model, POOLMod. Julia testified at the Connecticut Department of Public Utility Control (“DPUC”) regarding the RFP process and recommended the selection of winners and award of contracts.

• **authored FERC addendum**: Julia wrote the report that served as an Addendum to the market power analyses that were filed with FERC in Docket No. ER05-665-001. The
The objective of this Addendum was to address the items requested by FERC in the deficiency letter issued on June 23, 2005, in this docket.

- **managed theoretical analysis and quantitative simulation modeling in the design and testing of recommended new regulatory regime**: Analysis and recommendations were presented to stakeholders.

- **conducted market assessment**: For a major Canadian utility, Julia undertook a comprehensive market assessment of the New England REC markets, and specifically the Massachusetts and Connecticut markets, under three different scenarios, the status quo, with the utility’s resource commercialization schedule, and assuming sporadic participation by the utility.

Regulatory Economics

- **retained to advise on stranded cost obligation for cooperative leaving G&T utility**: in context of a FERC possible dispute, LEI analyzed and considered the retail and wholesale market factors for a distribution utility seeking to exit its existing contractual arrangements.

- **reviewed utility’s internal analysis and conducted a fatal flaw analysis to provide comments and critiques regarding investment planning**: LEI also prepared an analysis describing qualitatively the challenges to various NTA solutions identified in the utility’s internal analysis. LEI also conducted an independent analysis to estimate the costs of any possible NTA solutions. This involved talking to engineering firms, other utilities (on a no-names basis), and gathering specific data on DG and microgrid generation installations. LEI also commented on the practical feasibility/challenges associated with siting specific NTA technologies in the project region.

- **performed benefits analysis on proposed New York transmission line**: LEI performed an analysis of benefits to NY consumers from a proposed transmission line between New York State and New England, analyzing the impacts from the proposed project's investments on GDP, jobs, tax revenues, and system reliability. LEI also performed a cursory review of the proposed project's environmental impact, based on criteria established by the NY DPS Staff in previous cases before the Public Service Commission.

- **analyzed Chicago congestion issues**: LEI was retained to do a resource analysis in the Chicago area and to analyze the congestion within the Chicago area and MISO zones surrounding Lake Michigan.

- **reviewed energy and capacity prices in PJM**: A private client was interested in acquiring a pumped storage hydro generation facility owned by LS Power in the PJM region. The client asked LEI to prepare a proposal that will forecast the energy and capacity prices for the next 20 years of the relevant zone for this target asset. The price forecast exercise required LEI to model both energy and capacity markets on an integrated basis, as well as using a Real
Options Model to simulate the target unit’s operational decision in arbitraging the peak versus off-peak hours in the energy market.

- **analyzed the potential investment opportunities for a large IOU in energy storage in New England:** Through intensive research and analysis, including simulation-based modeling, LEI identified potential opportunities for energy storage investment in New England and prepared estimates of societal benefits from such investment.

- **conducted forecast on potential energy revenues of two proposed wind farms in Texas:** In addition, LEI also analyzed the merchant energy, capacity, and solar renewable revenues for a solar plant in New Jersey.

- **prepared overview of the PJM market:** LEI was hired to put together a presentation about the PJM market and investment opportunities in generation for the Public Utilities Commission of Ohio.

- **evaluated impact of changes to Alberta's climate change and carbon emission regulations on the portfolio of the power sector as a whole, and electricity consumers:** The analysis included modeling various scenarios using POOLMod relating to different specific regulations and assumptions to determine the financial impact on selected plants as well as the prevailing Pool Price forecasts for the province.

- **reviewed procurement process:** LEI was retained by Delaware Public Services Commission (“PSC”) to assist with review of the procurement process for the provision of Delmarva Power & Light Company (“Delmarva Power”)’s standard offer services, and to provide information and analysis regarding alternative long-term electricity procurement options for Delmarva Power to meet its Standard Offer Service residential and small commercial retail load. [Docket 14-0283]

- **advised on market power screening analysis in contemplation of large scale utility merger:** LEI provided advise on analytical approach and potential mitigation strategies for horizontal market power concerns.

- **authored report on IPP investment decisions:** LEI was engaged by a private equity company to provide a briefing paper that compares the opportunities and tradeoffs of the “Buy” versus “Build” investment decision in the IPP sector. The paper contains quantitative and qualitative research and analysis, based on market data on purchase prices from recent transactions (focused on New York, New England, and PJM), versus the cost of new-build assets.

- **reviewed New England REC prices:** LEI was retained by a renewable investor to review REC prices in the New England region and provide a forecast for various classes of REC prices for the purpose of investment appraisal.

- **provided assistance developing marketing materials for a transmission developer's roadshow:** As part of this engagement, LEI developed a series of ready-to-share slide decks
tailored to the specific target customers. Three categories of customers were considered: traders, utilities, and wind developers.

- **investigated the costs and benefits of proposed transmission line projects across New York State:** The study included reviewing the proposed projects from each of the applicants to identify key characteristics of each project. LEI also undertook simulation-based modeling of the New York market to assess the potential magnitude of future congestion on the New York system under varying levels of projected gas prices. [Case 13-E-0488]

- **conducted a simulation-based modeling exercise to determine the potential revenues for the proposed transmission project wheeling power from western MISO to eastern MISO (and eventually PJM):** LEI evaluated both the revenue opportunities to the investors (e.g., private benefits of the line based on market price differences and the market value of the transmission) as well as social benefits to the MISO system (i.e., wholesale price reductions and capacity market price differences); and evaluated the incremental value of the business strategy of selling the energy (and capacity) out of East MISO to third parties who will serve customers ultimately in PJM. LEI’s modeling exercise entailed evaluating intrinsic revenues (originating from power markets), extrinsic revenue (originating from price volatility), along with the green value of the Project (originating from the purchase of low-cost renewable energy).

- **conducted due diligence on gas-fired assets in the US:** LEI was engaged by a private equity firm to conduct due diligence on a 3,000 MW portfolio of gas-fired assets in PJM and ISO-NE. LEI was responsible for developing the model that was used in the pro forma financial statements.

- **reviewed operation status of nuclear plants:** LEI was retained to assess the impact of the continued operations of nuclear plants in the Midwest with state subsidies versus the closure of these nuclear plants in the electricity rates and the state’s local economy.

- **provided asset valuation due diligence and market analysis in support of the evaluation of geothermal resource opportunities in Germany as well as other investment initiatives in the region:** LEI’s scope included a comprehensive review of Germany’s electricity sector, renewable energy policies, and integration within surrounding European power markets.

- **Authored paper on MRAs:** LEI was engaged by WIRES to prepare a White Paper on Market Resource Alternatives (“MRAs”) which provides external parties with a clear understanding of MRAs and a concise description of how MRAs can work effectively alongside transmission investment in US power markets to support market development, reliability, and cost-effective supply.

- **analyzed clean energy export opportunities:** LEI was retained by Corporate Knights Inc. to perform a high-level estimation and analysis of potential opportunity for developing clean energy exports from Canadian markets to target US power markets. Julia Frayer presented a preview of her analysis at the ABB Energy and Automation Forum in September 2014.
• **provided a market outlook for a portfolio of assets located in ERCOT:** For a global investment firm, LEI provided a 10-year detailed market revenue forecast for the assets under base case assumptions. LEI also used its Real Options model to estimate a scarcity premium that would be included in addition to the intrinsic energy revenues.

• **assisted a New England incumbent utility in evaluating the economic benefits of two solutions aiming to relieve energy congestion in the metropolitan area of Boston:** LEI modeled various transmission solutions. The objective of the economic analysis from the energy market perspective was to examine whether there are any production cost savings or market price ("LMP") impacts from either proposal, and to describe under what conditions (assumptions) these benefits are realized.

• **prepared a 10-year energy market price outlook for the New England wholesale power market and forecast the impact of a proposed project on New England market prices:** LEI also determined the benefits of the proposed transmission project on employment, economic activity, and tax revenues in New England. LEI utilized the dynamic input-output ("I/O") economic model developed by Regional Economic Models, Inc. ("REMI") to measure the economic benefits to various New England states from the project on employment, economic activity, and tax revenues. LEI separated the economic impact caused by the construction of the project, and the impact caused by the reduction in energy prices due to the commercial operation of the project, taking into account issues such as usage of electricity in residential, commercial, and industrial sectors in the region, and also existing long-term energy contracts that would limit the impact of the project.

• **analyzed revenue/gross margin modules for a district cooling asset being considered for acquisition in Ohio:** Under this engagement, LEI performed a due diligence review of the information received from the seller (including documentation from the data room) and designed a series of models aiming at quantifying the asset’s potential revenues. Part of LEI’s scope work also consisted of identifying and assessing the opportunities to enhance and extend the customers base within the Cincinnati existing and future market conditions. LEI also evaluated the risks associated with prospective/existing customers forgoing the asset’s services in exchange of self-supplying their cooling needs.

• **provided expert analysis and insight on how the restructuring of the US electricity markets has affected the economics of nuclear power plants:** For a Japanese research institute, LEI provided a Briefing Memo that responded to discrete questions related to the role of government, and the impact restructuring had on nuclear plant operations and financing.

• **assessed proposed transmission project:** LEI assessed the economics of the proposed Lake Erie HVDC transmission project to investors and potential customers, by projecting revenue streams associated with the sale of energy, capacity and other products via transit on the Lake Erie HVDC transmission project ("LEP"). The LEP is a 100-km long 1,000 MW bi-directional HVDC transmission line that will connect the Ontario energy market with the PJM market. LEI prepared a comprehensive report that includes a review of the Ontario and PJM markets, a 20-year (2017 to 2036) market outlook and prices for electricity, capacity and
renewable energy credits in Ontario and the relevant zone/s in PJM; the total gross arbitrage value for the energy congestion rents, the capacity revenue potentials for PJM, and the renewable energy credits revenue potential in PJM.

- **for a utility in the northeastern US, LEI prepared a cost-benefit analysis of a proposed transmission line with the potential to change existing market arrangements:** In the analysis, LEI developed a base case and multiple project cases based on different configurations of the transmission project. Using its proprietary modeling tool, POOLMod, LEI simulated energy and capacity prices in each configuration over a 15-year timeframe, and compared the price differences against various cost allocation scenarios for the transmission line’s construction. LEI also tested the statistical significance of the project case results against the base case results, and conducted further analysis on the economic effects of additional renewable generation projects that construction of the transmission line would make possible.

- **assessed proposed transmission project:** LEI was retained to assist a private client in assessing the economics of this proposed transmission project and determining additional revenue streams or value adders from the perspective of third-party shippers. LEI was specifically asked to isolate and measure the spot market volatility premium.

- **performed a due diligence and market study for three hydro units in PJM:** LEI’s tasks included reviewing the merchant prices and REC prices, evaluating the power purchase agreement and capacity charges and providing energy, capacity and REC forecasts.

- **performed a review and analysis of rate-making approaches applied to the client’s capital expenditure profile including demonstration of the negative potential impact of “I-X” rate-making approaches on a utility’s ability to earn a fair return:** The objective of this engagement will be to demonstrate to stakeholders and the Ontario Energy Board the reasonableness of the revenue cap per customer model that the client has previously relied upon and planned to propose in its next ratemaking review. Furthermore, the secondary objective was to conceptualize the insufficiency of the “I-X” regime, even with a revenue cap per customer model, in consideration of the fair return standard and given the client’s business is operating in an environment where substantial capital expenditure needs are projected over the next Incentive Regulation Plan (“IRP”) period. Docket Number EB 2012-0459

- **prepared 10-year (2014-2023) energy and capacity markets price outlooks for the New England market:** This report presents results of a base case and low case long term price forecasts for the New England market using updated market information, as well as underlying assumptions, methodology, and a brief overview of the market along with a review of relevant regulatory considerations.

- **testified in front of the New Mexico Finance Authority Oversight Committee regarding the potential economic benefits of new investment in transmission in the state of New Mexico:** Julia considered the impacts of local spending during construction of the proposed HVDC
project on the state economy, using BEA RIMS multipliers to estimate the boost to economic activity. Julia also employed the DOE’s JEDI model to estimate the potential for new jobs and GDP growth as a result of new renewables development in state (wind and solar) as a result of the transmission access that would be provided by the HVDC project.

- **provided independent review of market benefit reports**: LEI was engaged by NRG to provide an independent review of the economic analysis in two reports: “Report and recommendations comparing repowering of Dunkirk Power LLC and transmission system reinforcements”, published by National Grid (“NG”) on May 17, 2013, and “NRG Dunkirk Repowering Project Economic Impact Analysis”, published by Longwood Energy Group LLC (“LEG”) on March 20, 2013. Both reports forecasted market benefits, production cost savings and macroeconomic benefits. LEI’s review compared methodologies and assumptions used by each report, and how these may have affected their results; LEI’s review was subsequently submitted by NRG to Case 12-E-0577 at the New York Public Service Commission.

- **conducted macroeconomic analysis of HVDC project**: Julia was part of a team of economists that performed a macroeconomic analysis to estimate the local economic benefits accruing to taxpayers, residents, and businesses along the 800+mile route during construction of the Zephyr HVDC project, which runs from Wyoming to Colorado, Utah, and Nevada. LEI performed the analysis using the REMI P1+ model.

- **conducted regulatory review in PJM**: LEI was hired to review regulatory and market drivers of energy and capacity prices in PJM, and forecast prospective revenues of a portfolio of pumped storage and conventional hydro generation facilities offered by FirstEnergy, over a 20 year horizon.

- **assessed market opportunities for industry-scale battery storage technology in the US and selected European jurisdictions for energy arbitrage and ancillary services provision**: Under this assignment, LEI modeled the operation regime of a battery operating in energy and ancillary services markets in order to monetize added revenues for a wind and solar generators. Findings and modeling results were analyzed and presented before the client’s management team and were then deployed to develop strategy for marketing battery technology to renewable developers and utilities. Another objective of the project was to identify most suitable markets and products to optimize the strategy of the battery’s market entry.

- **managed a market study reviewing historical electric rates (and projecting forward electric rates) for large commercial customers in the New England market**: The electric rates analysis was composed of a number of components, such as the commodity costs of electricity, compliance costs for certain state programs (like RPS), delivery charge for delivering electricity, and ancillary services and administrative supply charges. LEI created projection for each of these components and considered state retail sales requirements for renewables, etc.
• **triennial market power analysis:** in support of various clients’ application to renew market-based rate authorization under the provision of the Federal Energy Regulatory Commission (“FERC”), LEI performed Pivotal Suppliers Analysis and Market Share Analysis for the Northeast region, including New England, New York, PJM as well as the Connecticut, NYC and PJM East submarkets; as well as California and Southwest US markets.

• **conducted a modeling analysis, in which the market price impact of incremental wind resources was projected:** LEI staff completed a simulation-based forecast of the New England system for a future test year (2015) with varying levels of wind generation. Using the multi-scenario approach, we then estimated the energy market price reductions across a range of incremental wind generation scenarios. The simulation modeling was further supplemented with statistical analysis. The one year analysis was also supplemented with sensitivities employing different baseline assumptions with respect to fuel prices.

• **conducted market analysis on Maine transmission:** LEI performed a fifteen (15) year simulation analysis to estimate the market impacts resulting from a new transmission interconnection (covering the timeframe 2015-2029) and project the impact on Maine customers (including Northern Maine customers). LEI evaluated the market evolution with and without the interconnection and described the potential ramifications for purchasing electricity for Northern Maine customers. The analysis also estimated the potential impact on ratepayers from the re-allocation of the ISO-NE Pool Transmission Facility rate to incorporate the Northern Maine load and franchise area under a pro forma 10-year transitional agreement. LEI performed the modeling using our up-to-date ISO-NE simulation model (which covers the energy and capacity markets), extended to represent in detail the Maritimes control area.

• **prepared presentation material on the electricity market impacts and the benefits of Northern Pass Transmission project for New Hampshire and New England consumers:** In addition, LEI staff assisted the client in preparation of an op-ed piece for dissemination to New Hampshire press outlets. LEI staff also attended an internal company meeting and testified on behalf of the client. Lastly, LEI staff assisted in the preparation for and attended the live New Hampshire Public Radio program “The Exchange” to discuss the benefits of the Northern Pass Transmission over the hour-long live show.

• **provided extensive late-stage development due diligence for an investor in four potential merchant transmission investments:** LEI prepared three presentations analyzing four proposed merchant HVDC transmission projects across the US. Analysis included detailing the development roadmap for HVDC projects and the current status of the proposed projects, identifying potential competitive threats from other similar competing transmission lines and proposed local generation, and examining the renewable needs and willingness to pay of utilities in the “sink”.

• **authored report on capital expenditure recovery mechanisms:** For a Canadian client, Julia prepared a report that looks into the different capital expenditure recovery mechanisms utilized in four markets namely Australia, New Zealand, Ontario, and the UK for electric
network utilities. The report also provided different options that the client can propose for its performance-based ratemaking filing.

- **evaluated third-party energy price forecast for the New England and Texas (ERCOT) regions, with a specific eye on the underlying assumptions**: LEI recommended that certain key assumptions should be updated, including demand projections and CO2 price forecasts. We also argued that some underlying assumptions were unrealistic given actual market conditions, and should be adjusted or eliminated.

- **assisted the Maine Public Utilities Commission in developing an electric resource adequacy plan to aid MPUC in the development of a strategy for the pursuit of the long-term contracts**: The LEI team, led by Julia, submitted a report that builds up a set of recommendations for a long-term investment strategy based on an analysis of the current supply-demand situation, a review of the existing wholesale market rules for energy and the Forward Capacity Market, an examination of historical price trends, and review of the investment needs assessments prepared by the utilities and ISO-NE, as well as relevant sub-regional planning studies.

- **led a due diligence team and assisting in the exclusivity negotiations with respect to an acquisition of a 400+ MW coal-fired plant in the PJM market by a group of private investors**: Julia’s role included management of LEI’s economic appraisal, coordination of preliminary technical due diligence, negotiations with third parties on possible off-take arrangements, and oversight over financial modeling.

- **prepared a market study of the Ontario electricity market for a major potential investor in Ontario’s generation assets**: This report contained an overview of the Ontario electricity market, including a description of market evolution, a summary of key institutions, regulatory and policy initiatives that have impacted the market landscape, and a long term projection for the market going forward.

- **authored report on California capacity markets**: LEI prepared for the California Energy Commission a background report on the design evolution of a capacity market in California and its potential future impact on the generating assets in Mexico that import into the California ISO market.

- **Analyzed Kentucky electricity industry**: To satisfy the requirements of a recently passed statutory mandate, Julia and the LEI team conducted a broad-based analysis of current practices and the potential for reform within Kentucky’s electricity industry in four areas: (i) energy efficiency and demand-side management; (ii) use of renewables; (iii) full cost accounting; and (iv) tariffs. Reported results to the state’s regulatory commission, including a complete set of recommendations in each of the four areas for overcoming existing impediments to legislative objectives for improvements in the industry’s overall efficiency and reductions in its environmental impact.

- **offered feedback on benchmarking methodology**: Julia provided comments on the benchmarking methodology suggested by OEB consultants, looking at the analytical aspects
of defining and benchmarking the performance of multiple utilities across a long period of time. The critique provided details on how each criterion affects the benchmarking study and what are the remedies available to improve the results.

- **conducted review on Ontario transmission**: Julia led a team that reviewed industry best practices in other jurisdictions and the current situation in Ontario to advise OEB on the appropriateness of the uniform transmission rate, as well as on the feasibility of moving to long-run zonally-differentiated marginal cost pricing. As part of this process, LEI undertook a comprehensive stakeholder review.

- **prepared MBR filings**: Over the course of 2007 and 2008, LEI prepared over a dozen MBR filings for various markets coming under the FERC’s triennial schedule as established in Order 697.

- **electricity price forecasting**: For an infrastructure fund, LEI used our propriety production cost simulation model to forecast electricity prices and generation from each plant. In addition, LEI provided capacity price forecasts for California based on the Resource Adequacy Requirement (RAR) at the system and local level.

- **conducted price forecasting analysis throughout North America**: Julia headed the analysis of long-term price forecasts and energy market dynamics for many of the regions in the US and Canada, including New England, Pacific Northwest, California, Alberta, Southwest Power Pool, SERC, the Midwest US (ECAR, MAIN, and MAPP), Maritimes, Ontario, New England, and PJM. In this practice area, she manages a team of economists that use a variety of modeling tools to forecast one-year to fifteen-year wholesale energy, capacity (where relevant), and market-based ancillary services price forecasts. As part of the modeling effort, LEI proprietary dispatch simulation model, POOLMod, as well as other tools that have been developed by LEI, such as CUSTOMBid, ConjectureMod, ViTAL, and LEI’s real options spark-spread module. This type of modeling effort required a detailed investigation of the micro and macro-economic issues facing these regional markets: demand profiling, growth forecasting, reserve margin, and new entry activity assessment. Such analyses are used by clients in establishing market values for assets they have targeted to acquire, consideration of portfolio risk and exposure, and assessments of procurement opportunities. This same modeling has supported regulatory analysis of utility acquisitions and planning strategies, consideration of the impact of market rules and “reservation prices” for sale processes.

- **reviewed power purchasing options at a large industrial customer’s Southeastern facilities over three years**: LEI assessed the probability of a supply interruption over the next three years due to the state of the transmission system in this region. We also assessed the facility’s options for purchasing power for this load in the wholesale market.

- **assisted in strategizing for the upcoming Clean Energy RFP**: For a leading New England law firm, LEI modeled a number of potential eligible projects that could offer into the RFP,
and then performed a mock evaluation, with various cost-benefit ratios. Through this analysis, LEI identified key drivers and assumptions that could affect project ranking.

SPEAKING ENGAGEMENTS AND PUBLICATIONS:

“Energy storage – how will it be part of the “Grid of Things” in the future?” WIRES’ 2016 Spring Meeting, April 16, 2016.

“Perspectives on future trade opportunities between Canada and the US, and benefits to US consumers” EUCI US/Canada Cross Border Power Summit Conference, Boston, Massachusetts, United States. April 8, 2015.
“Are transmission expansions and upgrades compatible with both small and large scale clean energy?” Panelist. Southwest Clean Energy Transmission Summit, Albuquerque, New Mexico, United States. April 1, 2015.

Curriculum Vitae

Marie N. Fagan, PhD
Managing Consultant and Lead Economist, London Economics International LLC

KEY QUALIFICATIONS:

Marie Fagan is Managing Consultant and Lead Economist at London Economics International, LLC, based in Boston, Massachusetts. With over 25 years of experience in research and consulting for the energy sector, Marie’s career has spanned international upstream and downstream oil and gas, global coal, North American gas markets, and North American power markets. She has advised C-suite industry clients, buy-side and sell-side financial clients, legislators, and regulators. At LEI, Marie’s expertise across electricity markets and fuels provides integrated perspectives and supports sound strategic advice for clients.

Marie leads LEI’s engagements related to oil and natural gas analysis. She directs LEI’s gas pipeline modeling efforts based on a sophisticated network model, which supports outlooks for natural gas prices and basis and analysis of flows on North American interstate pipelines. Marie has served as an expert witness in matters involving the Enbridge oil pipeline system, which required detailed analysis of pipeline flows and activities of shippers. She provides in-depth expert testimony on issues such as basis differentials, pipeline capacity and utilization in key regions, and LNG import and export supply and demand.

Marie has experience as a project manager for complex, multi-year engagements, include a two-year project for the Maine Public Utilities Commission in 2014-2016 and a two-year project for the Mississippi Public Service Commission in 2017-2019. She has deep experience in econometric analysis, including econometric analysis for utility performance benchmarking.

Marie is a member of industry and academic associations, including the Boston Economic Club, the Energy Bar Association, the International Association for Energy Economics, and New England Women in Energy and Environment. She is the Vice President for Business for the US Association for Energy Economics.

EDUCATION:

The University of Connecticut, B.S. in Business Administration (Finance), 1984.

EMPLOYMENT RECORD:

From: 2014 To: present
Employer:
London Economics International LLC
Managing Consultant and Lead Economist

From: 2012 To: 2014
Employer:
IHS, Inc (formerly Cambridge Energy Research Associates (“CERA”))
Senior Director, Upstream Strategy

From: 2007 To: 2012
Employer:
IHS, Inc (formerly Cambridge Energy Research Associates)
Senior Director, North American Gas and Power

From: 2004 To: 2007
Employer:
IHS, Inc (formerly Cambridge Energy Research Associates)
Director/Senior Director, CERAView Institutional Investor

From: 2003 To: 2004
Employer:
Cambridge Energy Research Associates
Director, North American Gas

From: 2001 To: 2002
Employer:
International Human Resources Development Corporation
Director, Global Gas Program

From: 1998 To: 2001
Employer:
Cambridge Energy Research Associates
Associate Director, Global Oil

From: 1996 To: 1998
Employer:
Cambridge Energy Research Associates
Associate, Global Oil

From: 1994 To: 1996
Employer:
Energy Information Administration
Economist

From: 1991 To: 1994

Employer: Decision Analysis Corporation of Virginia

Associate

From: 1989
To: 1990
Employer: Decision Analysis Corporation of Virginia
Research Associate

From: 1988
To: 1988
Employer: United States Department of Energy
Intern, Office of Policy Planning, and Analysis

RECENT PROJECT EXPERIENCE:

The projects briefly described below are typical of the work Marie Fagan has performed at London Economics International.

Econometric analysis and benchmarking

- *econometric benchmarking analysis of distribution utility performance*: LEI was engaged by an investor-owned local gas distribution company to support its rate filing for performance-based ratemaking. Marie led an econometric benchmarking analysis of utility performance in terms of O&M and capital costs. The econometric analysis used a transcendental logarithmic (“translog”) cost function to help set expectations for further efficiency improvement, for use in the setting of the X-factor.

- *econometric benchmarking analysis of generation unit performance*: LEI was engaged by a Canadian hydropower generation company to support its rate filing. Marie led an econometric benchmarking analysis of unit-level O&M costs for a cross-sectional data set of over 300 hydropower generation units.

- *econometric analysis of oil demand*: Marie led a comprehensive study of price and income elasticities of oil demand for Columbia University’s Center on Global Energy Policy (“CGEP”). The foundation of the study was a detailed econometric analysis which employed a variety of specifications of econometric models, including static and dynamic models, symmetric and asymmetric models, and tests of time-series properties of the data. The scope of the work encompassed separate models for crude oil, gasoline, and diesel demand, and relied on combined cross-section time-series data for OECD and non-OECD countries.

Crude oil and natural gas

- *independent expert in assessing role of Enbridge Line 3 for Minnesota*: Marie served as an independent market expert assisting the Minnesota Department of Commerce in
evaluating the application of Enbridge Energy for a Certificate of Need for its Line 3 oil pipeline expansion project (Docket No. PL-9/CN-14-916, OAH Docket No. 65-2500-32764). Marie’s analysis covered global and local trends in refined product demand and crude oil supply, refinery utilization rates, and utilization of high-conversion refinery capacity in Petroleum Administration for Defense District (“PADD”) 2 and in the local Minnesota region. Her analysis required detailed examination of the assumptions and methodology of an oil pipeline linear programming-based model in order to assess another witness’s testimony, which relied on the model. Marie provided written testimony; responded to interrogatory requests, provided written surrebuttal, and oral testimony.

- **independent research into the role of Enbridge Line 5 in NGLS and crude oil transport in Michigan**: For a non-governmental organization (“NGO”) Marie produced three white papers examining the current and future role of Enbridge Line 5 in Michigan related to three issues: propane supply in Michigan, transportation for crude oil producers in Michigan, and supply of crude oil to Michigan-area refineries. Marie’s analysis of the propane market included a comparative static econometric analysis of the supply and demand from propane in Michigan, explained in non-technical language. The white papers were used by the client in discussions with the Governor of Michigan and other stakeholders.

- **evaluation of the costs and benefits of the expansion of natural gas pipelines into New England**: Marie led analysis of the costs and benefits of a number of contracts for firm transportation (“FT”) service on natural gas pipelines. She reviewed pipeline precedent agreements and rate agreements and provided a qualitative analysis and comparison of contracts offered. She led the quantitative analysis of the impacts of pipelines on gas and power prices, which was underpinned by LEI’s proprietary simulation model of the New England power system (“PoolMod”), combined with a widely-used industry standard model of the gas pipeline system (known as “GPCM”). She provided insight and direction of research in gas price basis differentials, pipeline capacity and utilization in key regions, and LNG import and export supply and demand.

- **analysis of Western Canadian natural gas costs and production**: LEI was retained by counsel to provide support in the matter of NOVA Gas Transmission Limited (“NGTL”)’s application to the National Energy Board (“NEB”). LEI reviewed the evidence and prepared testimony: Marie led analysis of the natural gas and natural gas liquids (“NGLs”) market in Alberta and British Columbia, and the impact of a pipeline surcharge on producers of natural gas.
Expert testimony

- **expert witness report in support of litigation:** In Case 15CV-04225 in the District Court of Johnson County, Kansas, LEI was retained by counsel to examine the value of the green attributes of landfill gas (“LFG”) produced by a project in Kansas City, Kansas, and sold under long-term contract to the Sacramento Municipal Utility District (“SMUD”). Marie’s report demonstrated several flaws in the opposing counsel's expert's methodology. Marie proposed an alternative, more appropriate methodology for valuing the green attributes of LFG, based on market fundamentals driven by the California RPS requirements.

- **independent market expert, and expert witness for public utilities commission:** For the Maine Public Utilities Commission, in the evaluation of the costs and benefits of alternatives for expansion of natural gas supply into Maine (MPUC Docket #2015-00071), Marie authored reports provided to the Commission; responded to discovery from other parties; prepared discovery questions and cross-examined witnesses; reviewed testimony by other parties and provided assessments of the issues presented; and served as an expert witness in the proceedings.

ERCOT/Texas power market

- **assessment of political support for large-scale transmission expansion:** Marie examined the political, legislative, and economic drivers of ERCOT’s Competitive Renewable Energy Zones (“CREZ”) to support due diligence for an investor interested in wind assets in ERCOT, and provided an assessment of state-level support for further expansion of CREZ transmission lines. She also provided an assessment of and outlook for ERCOT’s and the Public Utility Commission of Texas’s views of the “system cost” (the potential increased need for ancillary services and firm capacity) of wind.

- **forecast of potential energy revenues of two wind farms in Texas:** LEI used its proprietary dispatch model, PoolMod, to project energy prices for the West zone in ERCOT. Marie led the project, and also examined the implications of the PPA related to the two wind farms.

Procurement advisory

- **analysis of the macroeconomic impact of biomass electric power generation:** For Maine Public Utility Commission Docket No. 2016-00084, Marie conducted a macroeconomic study comparing the impacts of bids related to biomass power procurement. Marie used the IMPLAN model to estimate impacts on direct, indirect, and induced jobs, payments to the state and municipalities, payments for fuel harvested in the state, and other macroeconomic impacts.
• **independent evaluator for solar procurement**: for PacifiCorp, Marie led the independent evaluator team for PacifiCorp’s system-wide 2017 Solar RFP. The project included a review of PacifiCorp's Solar RFP, the facilitation and monitoring of communications between PacifiCorp and bidders, reviewing the initial shortlist and final shortlist evaluation, and scoring.

Market rules and practices

• **analysis of key characteristics of capacity markets**: To support Board-level understanding of the implications of potential capacity market designs in Alberta, Marie prepared a detailed review and comparison of capacity markets across international and North American jurisdictions. The report concluded that “the devil is in the details” of capacity market design. Market design details with potentially large impacts on the client were resource eligibility definitions, price-setting mechanism, demand curve design, performance requirements, and market power mitigation rules.

• **advisory on a wide variety of market rules and regulatory risks**: LEI was engaged to support a client’s Regulatory Group in its administering of the company’s compliance program. This involved creating and delivering a monthly report covering developments by regional market and traded products, which included: energy, capacity, long-term transmission service, FTR auctions, ancillary services, diesel oil, PRB coal, natural gas commodity, transmission, and storage, RECS, and CO2. Marie served as project manager and executive editor of the monthly report.

• **advisory for an investigation related to the timing of outage scheduling**: For a law firm, Marie provided research and expertise covering US Federal Energy Regulatory Commission (“FERC”) practices related to monitoring, enforcement, and definition and prosecution of alleged market manipulation.

• **advisory to provincial government**: LEI was engaged to perform analysis of the organization and governance of electricity systems both cross-jurisdictionally and within the province of Nova Scotia. Marie provided a review of the Nova Scotia gas and power sectors, including governing institutions, the legal and regulatory framework, recent developments and challenges, and SWOT analysis.

• **advisory to UK Department of Energy and Climate Change**: Marie participated in an evaluation of auction design for the UK DECC. The UK market regulator was interested in whether US power markets evaluate capacity bids based on criteria other than the price bid, specifically, if the length of contract had a role in the auctions. Marie reviewed capacity market auction rules for PJM, ISO-New England and the New York ISO, as well as international spectrum auctions, North American gas transmission open season rules, and international auctions for toll roads.
Electricity and natural gas asset valuation and transaction advisory

- **evaluation of behind-the-meter solar business models**: Marie led a project examining US federal and state incentives for solar adoption, and assessed business models used for targeting commercial, institutional, and industrial sectors to support a client’s due diligence related to a potential investment in business-to-business behind-the-meter solar in the Northeast United States. Marie’s team also developed key questions the client should ask, as part of its evaluation of potential transactions in the solar sector.

- **evaluation of contracts for firm gas transportation capacity**: For plants located in Virginia and Connecticut, Marie evaluated the value of firm transportation and interruptible transportation legacy contracts. The client also retained LEI to forecast delivered gas prices in New England (Connecticut) and PJM (New Jersey) and locational marginal prices as well as retail electricity prices in Connecticut. Marie led the gas market analysis for this project.

- **assessment of congestion/curtailment risk**: Marie led a project for a wind developer, providing a quantitative assessment, of congestion/curtailment risk for a wind asset in New England. LEI incorporated information from the interconnection impact study to examine system limits and provided an assessment of risk of outages based on NERC outage data for NPCC.

- **forecast of reserves market prices**: To support potential acquisition of hydropower assets, Marie provided analysis of ISO-New England’s Locational Forward Reserves Market.

- **due diligence related to a district cooling asset**: Marie reviewed contracts and developed a model for projecting revenues and gross margins for the asset. Marie provided insight by identifying the potential for lower customer contract prices at renewal (in contrast to the seller’s assumptions) and other areas of revenue risk.
EMPIRICAL ANALYSIS OF TOTAL FACTOR PRODUCTIVITY TRENDS IN THE U.S. GAS DISTRIBUTION INDUSTRY

Prepared for

NSTAR Gas Company

By

London Economics International LLC
717 Atlantic Avenue, Suite 1A
Boston, MA 02111

November 8, 2019
DISCLAIMER

London Economics International LLC (“LEI”) was retained by NSTAR Gas Company (“NSTAR Gas” or “the Company”) to prepare an industry total factor productivity study (“TFP Study”). LEI has made the qualifications noted below with respect to the information contained in this TFP Study and the circumstances under which the report was prepared.

While LEI has taken all reasonable care to ensure that its analysis is complete, gas markets are highly dynamic, and thus certain recent developments may or may not be included in LEI’s analysis. It should be noted that:

• LEI’s analysis is not intended to be a complete and exhaustive analysis of productivity trends in the gas local distribution utility (“LDC”) sector. The provision of an analysis by LEI does not obviate the need for potential investors to make further appropriate inquiries as to the accuracy of the information included therein, and to undertake their own analysis and due diligence.

• No results provided or opinions given in LEI’s analysis should be taken as a promise or guarantee as to the occurrence of any future events.

• There can be substantial variation between assumptions and market outcomes analyzed by various consulting organizations specializing in the LDC sector and investments in such markets. Neither LEI nor its employees make any representation or warranty as to the consistency of LEI’s analysis with that of other parties.

The contents of LEI’s analysis do not constitute investment advice. LEI, its officers, employees, and affiliates make no representations or recommendations to any party other than NSTAR Gas. LEI expressly disclaims any liability for any loss or damage arising or suffered by any third party as a result of that party’s, or any other party’s, direct or indirect reliance upon LEI’s analysis and this report.

London Economics International LLC
717 Atlantic Avenue, Suite 1A
Boston, MA 02111
www.londoneconomics.com
Table of contents

ACRONYMS ... 3

1 EXECUTIVE SUMMARY .. 4
 1.1 WHAT IS TFP? ... 4
 1.2 OVERVIEW OF THE LDC INDUSTRY IN THE U.S. AND THE NORTHEAST REGION 5
 1.3 WHAT DATA WAS USED FOR THIS LDC INDUSTRY TFP STUDY? ... 10
 1.4 WHAT ARE THE RESULTS OF THE TFP STUDY FOR THE U.S. LDC INDUSTRY? 11
 1.5 TFP GROWTH IN THE NORTHEAST REGION OF THE LDC INDUSTRY ... 12
 1.6 HOW DO YOU TRANSLATE THE INDUSTRY AVERAGE TFP GROWTH RATE INTO AN X FACTOR FOR NSTAR GAS’ PBR PLAN? .. 13

2 BASICS OF TOTAL FACTOR PRODUCTIVITY .. 15
 2.1 WHAT IS PRODUCTIVITY? ... 15
 2.2 OVERVIEW OF TFP METHODS ... 16
 2.3 SELECTING AN INDEXING TECHNIQUE ... 18
 2.4 APPROPRIATE LENGTH OF TFP STUDY .. 19
 2.5 MEASURING TFP GROWTH RATES ... 20
 2.6 NUMBER OF GAS UTILITIES .. 21

3 TFP METHODOLOGY AND DATA SOURCES .. 25
 3.1 OVERVIEW OF DATA SOURCES .. 25
 3.2 OUTPUT .. 25
 3.3 INPUTS ... 27
 3.3.1 OM&A input ... 27
 3.3.2 Capital input quantity ... 29
 3.3.3 Capital input price index .. 35

4 TFP RESULTS ... 38
 4.1 U.S. INDUSTRY TRENDS .. 38
 4.1.1 Output index .. 38
 4.1.2 Input index .. 39
 4.1.3 TFP and PFP growth .. 40
 4.2 NORTHEAST REGION TFP TRENDS .. 41
 4.3 NSTAR GAS HISTORICAL TFP GROWTH .. 43

5 X FACTOR RESULTS .. 46

6 APPENDIX: ALTERNATIVE OUTPUT METRIC ... 48

Table of figures

FIGURE 1. Top 5 LDCs in terms of 2017 total sales volume across the U.S. .. 6
FIGURE 2. Top 5 LDCs in terms of 2017 total number of customers across the U.S. 6
FIGURE 3. Top 5 LDCs in the Northeast in terms of total sales volume in the Northeast Region 8
FIGURE 4. Top 5 LDCs in terms of total number of customers in the Northeast Region 8
FIGURE 5. Miles bare steel mains in use in the U.S. as of 2018 ... 9
FIGURE 6. Miles of cast and wrought iron steel mains in use in the U.S. as of 2018 10
Acronyms

A&G Administrative and general expenses
BEA Bureau of Economic Analysis
BLS Bureau of Labor Statistics
Capex Capital expenditure
DEA Data Envelopment Analysis
DPU Department of Public Utilities (Massachusetts)
EIA Electricity Information Administration
FERC Federal Energy Regulatory Commission
GDP-PI Gross Domestic Product Price Index
HWI Handy Whitman Index
LDC Local distribution company
LEI London Economics International LLC
OHS One hoss shay
OM&A Operations, maintenance, and administrative
Opex Operating expenditure
PEG Pacific Economics Group
PBR Performance-based regulation
PFP Partial factor productivity
PPI Producer price index
ROE Return on equity
SFA Stochastic Frontier Analysis
TFP Total factor productivity
X factor Productivity factor
WACC Weighted average cost of capital
1 Executive Summary

London Economics International (“LEI”) was engaged by NSTAR Gas Company (“NSTAR Gas” or “the Company”) to perform a Total Factor Productivity (“TFP”) study for the gas local distribution company (“LDC”) industry in the U.S. Based on an index-based analysis of input quantities (labor, non-labor operations, maintenance, and administration (“OM&A”), and capital) and output quantities (number of customers served), the U.S. LDC industry experienced an annual average TFP trend of 0.09% between 2003 and 2017. This calculated TFP trend, if paired with an inflation factor (“I factor”) that relies on U.S. Gross Domestic Product-Price Index (“GDP-PI”), results in a proposed productivity factor (“X factor”) of -0.79%. In addition, LEI also evaluated TFP trends for LDCs operating in the Northeast Region (with the region defined consistent with conventions employed by the U.S. Bureau of Labor Statistics (“BLS”)). The LDCs in the Northeast Region experienced an average TFP growth rate of -0.39% over the 2003-2017 timeframe. This TFP growth, coupled with an I factor based on GDP-PI, results in an X factor of -1.30%.

This report is structured as follows: Section 0 presents an overview of the various methods of measuring productivity and explains why an index method was selected for this Industry TFP Study. Section 0 discusses the different input and output measures that were used in the calculation of TFP trends and the source of the underlying data. Section 4 presents the TFP growth rate results for the national sample and the Northeast region sample of LDCs. Section 0 provides the recommended X factor for the Company. Lastly, in the appendix, LEI presents the detailed results of the TFP calculations using an alternative output metric.

1.1 What is TFP?

TFP measures the total quantity of output(s) produced by a firm (or firms) relative to the quantity of inputs employed. As implied in the name, a total factor productivity metric should cover all inputs to the production process (in contrast, a partial factor productivity (“PFP”) metric evaluates a single input).

For purposes of ratemaking and specifically for input to a comprehensive price cap or revenue cap plan under PBR, an industry TFP study is needed that reports the growth rate or year-over-year rate of change in TFP levels. Moreover, those TFP trends should be based on quantities of

inputs and outputs, not simply annual operating costs. In this way, the industry TFP Study captures the changes in the overall physical productivity of firms within the industry.

A TFP study for purposes of setting an X factor for a rate escalation mechanism should not focus on any single firm nor report the efficiency levels of any specific firm. The firm’s own performance should have little or no impact on the broad comparative measure chosen for the X factor so that the firm is given an incentive to match (or even outperform) the industry average productivity growth rate. Also, it is important to keep in mind that a TFP study, by its nature, is not a forecast of future productivity - it is squarely based on historical data. However, the historical growth rates or trends in physical productivity for the industry as a whole over time can be informative for setting the parameters for a firm’s PBR plan on a going-forward basis, if the observed TFP trends accurately capture industry conditions that are expected to continue into the future.

1.2 Overview of the LDC industry in the U.S. and the Northeast Region

In the U.S., there is a total of 196 investor-owned LDCs. As of 2017, the total number of customers served by these LDCs was 69 million, mostly residential customers. The total number of customers grew by an average of 1.6% per year for the past three years (2015-2017). On the other hand, gas sales in the same period have been decreasing by an average of 1.9% per annum. To conduct an industry TFP study, LEI required detailed data going back to 1998 for each LDC. Notwithstanding the variability in records available, LEI was able to get a consistent data set for 83 LDCs. The 83 LDCs included in the Industry TFP Study covered 69.5% of the customers served in the U.S. LDC industry in 2017.

The largest LDCs in the U.S., in terms of total sales volume and the number of customers, are Southern California Gas Company, Pacific Gas and Electric Company, Northern Illinois Gas Company, Piedmont Natural Gas, Consumers Energy Company, and CenterPoint Energy Resources, as shown in Figure 1 and Figure 2 below. These five companies represent more than 20% of the U.S. market for LDCs, based on the total volume of gas sold and customers served. None of these large LDCs are located in the Northeast Region. NSTAR Gas is less than 16% of the size of these larger LDCs in terms of number of customers and gas sales.

2 LEI commenced the data collection process with identification of operating expenses and other financial data. LEI then deflated the data by an appropriate input price index in order to estimate a proxy for a physical quantity. Prices are also needed to form input weights; this is described further in Section 0.

4 Ibid.

5 Ibid.
LEI also estimated the industry TFP trends for the Northeast Region, in which NSTAR Gas operates. Several states comprise the Northeast Region, according to the BLS. These include...
Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. There is a total of 40 investor-owned LDCs in the Northeast Region, and these LDCs served a total of 12.6 million gas customers in 2017. LEI was able to collect the requisite data for 29 LDCs, covering 94% of the number of customers served in this region.

Year-over-year growth in the number of customers served is lower in the entire Northeast Region at 0.8% per year, compared to the U.S. as a whole, at 1.6% per year for the past three years. Likewise, gas sales have declined faster in the Northeast Region (at 2.9% per year) as compared to the U.S. (1.9% per annum) for the past three years.

The Public Service Electric and Gas Company in New Jersey is the largest LDC in the Northeast Region as of 2017 in terms of sales volume and number of customers, garnering 13% to 14% of the regional market share in terms of sales volume and customers, respectively. The other large LDCs in the region (in terms of both sales and number of customers) are Consolidated Edison Company of New York, Inc., Brooklyn Union Gas Company, KeySpan East Corporation, Niagara Mohawk Power Corporation, and National Fuel Gas Distribution Company as shown in the figures below. These companies are included in LEI’s Industry TFP Study.

6 EIA 716.

7 LEI’s Industry TFP Study for the Northeast Region covered seven out of nine states in the Northeast Region. See Section 2.6 for more information.
Figure 3. Top 5 LDCs in the Northeast in terms of total sales volume in the Northeast Region

Source: EIA 716; LEI analysis

Figure 4. Top 5 LDCs in terms of the total number of customers in the Northeast Region

Source: EIA 716; LEI analysis
Gas pipelines are generally made of bare steel, cast or wrought iron, plastic, and copper. Cast or wrought iron pipelines were utilized through the 1940s and are among the oldest pipelines constructed in the country. Since the 1950s, steel has been used widely, while plastic pipelines for gas distribution became prevalent in the early 1970s. Although many cast iron and bare steel pipelines have been replaced over the years, some still remain in operation. In 2018, a total of 13,792 main miles of bare steel (or 45% of the U.S.) were located in the Northeast Region, as shown in Figure 5 below. In contrast to the 45% share of bare steel mains, the Northeast Region only had 18.3% of 2017 total number customers in the U.S.

Similarly, many cast and wrought iron mains are still in use in the Northeast Region. A total of 14,580 main miles of cast and wrought iron (or 64% of the U.S.) are located in the Northeast Region as of 2018, as shown in Figure 6 below. This indicates that the Northeast Region has a relatively older system compared to the rest of the U.S.

Figure 5. Miles bare steel mains in use in the U.S. as of 2018

<table>
<thead>
<tr>
<th>Bare Steel</th>
<th>Main Miles Bare Steel</th>
<th>% of Total Main Miles in the State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>6,419.8</td>
<td>13.2%</td>
</tr>
<tr>
<td>New York</td>
<td>5,151.9</td>
<td>10.4%</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1,287.9</td>
<td>5.9%</td>
</tr>
<tr>
<td>New Jersey</td>
<td>588.1</td>
<td>1.7%</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>198.6</td>
<td>6.2%</td>
</tr>
<tr>
<td>Connecticut</td>
<td>138.8</td>
<td>1.7%</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>6.8</td>
<td>0.3%</td>
</tr>
<tr>
<td>Maine</td>
<td>0.1</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

| Other states | 68.8% |

Source: PHMSA “Pipeline Replacement Updates.” Accessed on September 17, 2019

9 Ibid.

10 Ibid.
1.3 What data was used for this LDC industry TFP study?

Based on best practices of estimating industry TFP trends for PBR plan design, LEI selected the number of customers served\(^{11}\) as the measure of output. For the inputs, LEI included an input measure that reflects comprehensively the total cost of service, including inputs that measure the quantity of capital deployed,\(^{12}\) and the quantity of operations maintenance and administration (“OM&A”) costs.\(^{13}\) Sections 3.2 and 3.3 provide a discussion of the inputs and output measures LEI used in this Industry TFP Study.

The data selection and gathering process was a fundamental and critical step that required a significant amount of effort in conducting the industry TFP Study. Unlike the electric industry, data for investor-owned LDCs is not available from a single source. Most of the LDCs file their annual LDC reports with their respective state regulators. LDCs that serve multiple states also

\(^{11}\) It should be noted that this is not only the captive customers but also includes customers using the distribution system that are being supplied by a competitive (alternative) gas supplier.

\(^{12}\) LEI used a monetary approach for estimating capital quantities and have assumed a One Hoss Shay (“OHS”) physical decay profile. A detailed discussion of this is found in Section 3.3.2.2.

\(^{13}\) See Section 0 for details on how this data is used.
submit information with FERC using FERC Form 2. Primary data sources used in this TFP Study include the annual LDC filings to the state public utility commissions, FERC Form 2, and EIA 716 (Natural Gas database for consumption – company level supply and disposition).

Based on data availability, this Industry TFP Study included 83 LDCs across 31 states. The Northeast Region included 29 of the 83 LDCs. LEI’s Industry TFP Study reported the TFP growth over a timeframe of fifteen years, from 2003 through 2017. Section 2.6 provides a discussion of the LDCs included in LEI’s Industry TFP Study.

1.4 What are the results of the TFP Study for the U.S. LDC industry?

LEI estimated an annual average TFP growth rate of 0.09% for the U.S. LDC industry. Although it is very close to zero, it is nevertheless marginally positive. A positive TFP growth rate implies that the quantity of output (number of customers served) grew faster than the quantity of inputs (capital and OM&A). As shown in Figure 7 below, total customers served grew at a slightly higher rate (at 0.73% per year) compared to the quantity of inputs deployed by U.S. LDCs (at 0.65% per year). The results of the industry TFP study are discussed further in Section 4.

15 Of this, 40 LDCs are located in Northeast. LEI has included 29 out of 40 LDCs in the Northeast.

16 LEI checked the robustness of this TFP growth rate by using a trend regression method. The results show that the industry TFP growth rate is 0.12% per annum.

17 LEI tested several alternative assumptions to confirm the robustness of the overall results of the industry TFP study. In all cases, alternative assumptions would have resulted in a more negative annual average TFP growth rate. Section 6 (Appendix) provides a discussion of the alternative assumptions and results.
Figure 7. TFP growth rates for U.S. LDC industry (2003-2017)

<table>
<thead>
<tr>
<th>Year</th>
<th>Output Customers</th>
<th>OM&A</th>
<th>Inputs Capital</th>
<th>Total</th>
<th>TFP Growth Customers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>1.08%</td>
<td>-0.30%</td>
<td>0.97%</td>
<td>0.34%</td>
<td>0.73%</td>
</tr>
<tr>
<td>2005</td>
<td>1.26%</td>
<td>6.07%</td>
<td>0.12%</td>
<td>3.06%</td>
<td>-1.80%</td>
</tr>
<tr>
<td>2006</td>
<td>0.79%</td>
<td>-7.20%</td>
<td>0.06%</td>
<td>-3.49%</td>
<td>4.28%</td>
</tr>
<tr>
<td>2007</td>
<td>1.00%</td>
<td>6.78%</td>
<td>0.12%</td>
<td>3.33%</td>
<td>-2.32%</td>
</tr>
<tr>
<td>2008</td>
<td>0.56%</td>
<td>2.32%</td>
<td>0.34%</td>
<td>1.30%</td>
<td>-0.94%</td>
</tr>
<tr>
<td>2009</td>
<td>0.03%</td>
<td>3.11%</td>
<td>0.25%</td>
<td>1.64%</td>
<td>-1.60%</td>
</tr>
<tr>
<td>2010</td>
<td>0.28%</td>
<td>-1.40%</td>
<td>0.64%</td>
<td>-0.36%</td>
<td>0.64%</td>
</tr>
<tr>
<td>2011</td>
<td>0.67%</td>
<td>-0.41%</td>
<td>0.63%</td>
<td>0.11%</td>
<td>0.55%</td>
</tr>
<tr>
<td>2012</td>
<td>0.74%</td>
<td>-1.69%</td>
<td>0.44%</td>
<td>-0.60%</td>
<td>1.34%</td>
</tr>
<tr>
<td>2013</td>
<td>0.33%</td>
<td>0.12%</td>
<td>-0.23%</td>
<td>-0.06%</td>
<td>0.39%</td>
</tr>
<tr>
<td>2014</td>
<td>0.35%</td>
<td>0.84%</td>
<td>1.63%</td>
<td>1.25%</td>
<td>-0.90%</td>
</tr>
<tr>
<td>2015</td>
<td>2.08%</td>
<td>-2.99%</td>
<td>1.83%</td>
<td>-0.47%</td>
<td>2.56%</td>
</tr>
<tr>
<td>2016</td>
<td>0.61%</td>
<td>0.33%</td>
<td>1.36%</td>
<td>0.87%</td>
<td>-0.26%</td>
</tr>
<tr>
<td>2017</td>
<td>0.68%</td>
<td>1.71%</td>
<td>2.52%</td>
<td>2.14%</td>
<td>-1.45%</td>
</tr>
<tr>
<td>Average (2003-2017)</td>
<td>0.73%</td>
<td>0.52%</td>
<td>0.76%</td>
<td>0.65%</td>
<td>0.09%</td>
</tr>
</tbody>
</table>

1.5 TFP growth in the Northeast Region of the LDC industry

There are 29 firms represented in the Northeast Region LDC sample; these firms (and their customers) represent 94% of the LDC industry in this geographical region based on the number of customers. The average TFP growth rate from 2003 to 2017 for the LDCs located in the Northeast is -0.39%, as shown in Figure 8 below. The TFP growth rate for LDCs for this region is negative because of the faster growth in the quantity of inputs (capital and OM&A) relative to the increase in output (number of customers served).
1.6 How do you translate the industry average TFP growth rate into an X factor for NSTAR Gas’ PBR plan?

LEI understands that the Company will be proposing an I-X escalation mechanism, where the I factor would be based on GDP-PI trends, reflecting general inflation across the economy. With this specification, the X factor should reflect not only the productivity trends of the LDC industry but also the TFP and input price differentials between the economy as a whole and the LDC industry. As such, for the entire U.S. LDC sector, given the TFP growth rate of 0.09%, LEI estimated an X factor of -0.79%. For the Northeast Region TFP growth rate of -0.39%, LEI estimated an X factor of -1.3%. As discussed in Section 0, to derive this X factor, LEI applied a differential in expected input price index growth between the overall economy and the industry, as well as a TFP differential. Both the input and TFP differentials were negative.

A negative X factor does not imply that the PBR plan lacks productivity incentives; rather, it acknowledges that the LDC will need to increase its capital and operating expenditures relative to customer numbers and therefore rates will need to rise by more than just general inflation to ensure the utility can continue to provide reliable service to its customers.
LEI recommends a Northeast Region TFP growth rate for setting the Company’s X factor due to differences in key drivers of TFP between the Northeast Region versus the rest of the U.S., namely differences in economies of scale (size of LDCs), technology (materials used to construct mains), and growth in output. This is discussed further in Section 4.3.
2 Basics of Total Factor Productivity

2.1 What is productivity?

Productivity is the ratio of (a) quantity of outputs produced and (b) quantity of inputs deployed. Productivity growth is a trend variable based on the year-on-year change in the productivity ratio. In other words, productivity growth documents the rate of change in the quantity of outputs relative to the rate of change in the quantity of inputs. Even though an industry TFP study is based on historical data, the historical growth rates or trends can be useful for determining goals for the future, so long as the future has conditions similar to the past. The long-run average productivity growth rate achieved by the industry can serve as a reasonable level of productivity change that can be targeted for the future, and that informs regulators on the choice of an explicit productivity target or X factor under an “I-X” price cap or revenue cap regulatory regime.

Figure 9. Generalized concept of a TFP growth rate

<table>
<thead>
<tr>
<th>TFP growth rate =</th>
<th>% Δ weighted sum of the quantities of all outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Δ weighted sum of the quantities of all inputs</td>
</tr>
</tbody>
</table>

If a business uses many inputs, then there are many types of productivities that could be measured. For example, to assess labor productivity, one would look at the ratio that represents the quantity of output relative to the quantity of labor inputs used. Capital productivity would be measured as a ratio of the quantity of output relative to the quantity of capital deployed. Labor and capital productivity are each partial measures of productivity, also known as partial factor productivity (“PFP”). In contrast, a TFP measure covers output(s) relative to all inputs. The distinction between the TFP measure and the PFP measure, therefore, lies in the number of inputs analyzed.

18 Economic theory for PBR assumes a “steady state” environment, where generally, depreciation expense should be sufficient to cover normal going-forward capital expenditures to maintain the operable capacity of aging assets. Nevertheless, situations arise when these conditions do not perfectly hold, such as when capital investments are made to address reliability needs, or when the nominal cost of sustainment capital to replace or maintain aging infrastructure exceeds the depreciation expense, which is based on a historical cost basis of the original equipment.

19 It is preferable to have 10 or more years of growth rate figures; see Section 2.4 for discussion of the appropriate length of TFP study.

An industry TFP study measures the changes in overall productivity over time. A TFP study is not a benchmarking study, as it does not report out relative efficiency levels at a given point in time. And typically, an industry TFP study, by definition, will not focus on any single regulated firm, but rather the industry as a whole. The premise of PBR rests on the idea that firms in the same industry will face similar pressures for costs and output growth, and therefore an industry TFP growth is a reasonable target to impose on a regulated firm.

2.2 Overview of TFP methods

The following section is an overview of the various methods of performing a TFP study. TFP methods can be broadly categorized into deterministic methodologies, which “calculate” TFP, and econometric methodologies, which “estimate” TFP. Figure 10 below gives an overview of some of the methods LEI considered. These methods include the index method, data envelopment analysis (“DEA”), and Stochastic Frontier Analysis (“SFA”).

LEI chose to use an index method. The index method is deterministic, and by far, the most straightforward technique for estimating TFP growth over time. Firm-level data is aggregated to an industry-level number representing the quantity of inputs and outputs. Chained indices are formed based on these numbers, and the growth of the input and output indices over time allows for the estimation of the growth rate of TFP.

The index method will not measure performance relative to a hypothetical efficiency frontier; instead, it will measure the actual industry average productivity over time. It is also important to note that an index method, because it is a numerical technique as opposed to a statistical technique, does not give a forecast error measure. Therefore, interpreting differences in index values requires qualitative considerations. Moreover, with an index-based approach, the resulting TFP cannot be segregated into different drivers (e.g., technology versus economies of scale). Also, index methods cannot take into account other business factors affecting productivity – those must be considered in the selection of the peer grouping for the industry and the input and output data itself.

21 LEI separately prepared a Total Cost Benchmarking Study for the LDC industry. Please refer to the LEI Benchmarking Report, dated November 1, 2019.

22 Deterministic methodologies “calculate” TFP values, as opposed to econometric methodologies which “estimate” TFP values. Non-frontier econometric methods assume production is always efficient in the use of existing technology and estimate the potential level of production at each moment in time. Non-frontier methods do not provide separate estimates of technical change and efficiency change which can be provided by stochastic frontier econometric methods.
Figure 10. Empirical techniques for estimating TFP

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Index Method</th>
<th>Data Envelopment Analysis ("DEA")</th>
<th>Stochastic Frontier Analysis ("SFA")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Index number measures the ratio of all outputs (weighted by revenue shares) to all inputs (weighted by cost shares)</td>
<td>Linear programming technique which identifies best practice within a sample by fitting a frontier over the top of the data points and measures relative inefficiencies</td>
<td>Same as DEA but following econometric methods to estimate the efficiency frontier</td>
</tr>
<tr>
<td>Data needs</td>
<td>Quantity and price data on inputs and outputs for 2 or more firms</td>
<td>Quantity data on inputs and outputs for a sample of firms; price data required to get information on allocative efficiency</td>
<td>Quantity data on inputs and outputs for a sample of firms; price data required to get information on allocative efficiency</td>
</tr>
<tr>
<td>Advantages</td>
<td>Relatively simple and robust technique. Can incorporate many inputs and outputs with few observations</td>
<td>Can decompose cost efficiency into component parts, breaking down allocative and technical efficiencies. Can easily handle multiple outputs</td>
<td>Can decompose cost efficiency into component parts, breaking down allocative and technical efficiencies. Accounts for "data noise" (data errors, omitted variables, etc.) and allows for the use of standard statistic tests</td>
</tr>
<tr>
<td>Drawbacks</td>
<td>Does not allow for identification of various factors of TFP change such as technical efficiency, scale efficiency, etc.</td>
<td>Requires a large dataset. Sensitive to the way outputs and inputs specified. Can be difficult to explain in a regulatory setting</td>
<td>Requires large sample size for robust estimates. Requires specification of production or cost function. Can be difficult to explain in a regulatory setting</td>
</tr>
</tbody>
</table>

The benefits of the index method include relative simplicity in calculation and ease of communication. Index methods are more transparent when dealing with outliers, unlike DEA and econometric techniques, and also require significantly fewer data points/observations to reach a robust conclusion. For these reasons, index methods are often used for informing regulators in ratemaking proceedings.
Finally, LEI notes that the Massachusetts Department of Public Utilities (or “Massachusetts DPU” or “the Department”) and other regulators are familiar with the index approach and that this approach meets the Department’s goal of simplicity in designing utility rate structures.23

2.3 Selecting an indexing technique

Under the index method, one needs to choose the type of indexing technique. There are several well-known number indexation techniques and resulting index formulations: Laspeyres index, Paasche index, Fisher Ideal index, and Törnqvist index.

LEI utilized the Fisher Ideal index in this Industry TFP Study, which is a geometric mean of the Laspeyres and the Paasche indices (see Figure 11 below).24 The Fisher Ideal has been shown to have the most reasonable numerical index properties, whereas other population indices may not.25, 26

23 In D.P.U. 17-05-B, The Department stated that “The Department has determined that the goals of designing utility rate structures are to achieve efficiency and simplicity as well as to ensure continuity of rates, fairness between rate classes, and corporate earnings stability….. The Department has determined that a rate structure achieves the goal of simplicity if it is easily understood by consumers.”

24 Indexes are chained by comparing data for each year to the data from the year immediately preceding it (with the exception of the base year). This method provides a more accurate portrayal of year-over-year growth.

25 Diewert and Nakamura. Concepts and Measures of Productivity: An Introduction. 2005. Diewert and Nakamura used the ‘axiomatic’ approach to the selection of an appropriate index formulation which specifies the number of desirable properties an index formulation should possess: constant quantities test, constant basket test, the proportional increase in outputs test, and time reversal test. Only the Fisher Ideal index satisfied all four criteria that an index number method needs to meet. Specifically, the Fisher Ideal index overcomes the classic ‘index number problem’ suffered by the Laspeyres and Paasche indices, whereas one moves further away from the set of prices used, the representative quality of the index decreases (since prices change over time).

26 Diewert (1993) The Measurement of Productivity: A Survey, Swan Consultants (Canberra) conference on Measuring the Economic Performance of Government Enterprises, Sydney. reviewed alternate index number formulations to determine which index was best suited to TFP calculations. An axiomatic procedure was used and Diewert proposed certain tests to evaluate the alternate indexes. These included: (i) the constant quantities test: if quantities are the same in two periods, then the output index should be the same in both periods irrespective of the price of the goods in both periods; (ii) the constant basket test: this states that if prices are constant over two periods, then the level of output in period 1 compared to period 0 is equal to the value of output in period 1 divided by the value of output in period 0; (iii) the proportional increase in outputs test: this states that if all outputs in period t are multiplied by a common factor, I, then the output index in period t compared to period 0 should increase by I also; and (iv) the time reversal test: this states that if the prices and quantities in period 0 and t are interchanged, then the resulting output index should be the reciprocal of the original index. When the four indexes were evaluated against these tests, only the Fisher Ideal passed all four tests The Laspeyres and Paasche index failed the time reversal test while the Tornqvist index failed the constant basket test. On
The Fisher Ideal index can be formed as a chained or unchained index. LEI used the chained Fisher Ideal index because it avoids the index number problem, which arises with fixed weights. The chained Fisher Ideal index overcomes this common “index number problem” by changing the base annually - in each period, the base is the previous period’s observation. This allows for the most representative weights possible for each observation.

2.4 Appropriate length of TFP study

The main purpose of conducting a TFP study of this nature is to establish industry trends, which are inherently long term. Logically, the best method of creating a trend is by looking at multiple years of data and performance. The use of multiple years of data limits bias that can be caused by numerical outliers or one-off events that affect performance in any single year. Therefore, a productivity trend should cover a period that extends through a sufficiently long timeframe, to limit exposure to year-on-year productivity changes as well as one-off circumstances with respect to factors like weather, consumption, lumpy capital spending, and fluctuations in labor costs.

However, if the range of data is too long, the estimated average trend may be irrelevant for the purposes of informing future ratemaking initiatives. The timeframe should ideally incorporate more recent data that captures the latest trends in the industry while eliminating earlier time periods with productivity growth drivers that are no longer relevant.

Given data availability and quality (see Section 0 for further details) and best practices for TFP analysis for regulatory decision-making, LEI believes that the fifteen-year timeframe of 2003-2017 is appropriate for this study of the U.S. LDC industry. The most recent 15 years reflect the changing business circumstances in the LDC industry, which are likely to be driving productivity in the future. These changing business conditions include the pressures stemming from retail competition, technological developments in pipeline materials (which is exemplified by the movement away from cast iron/bare steel mains and services), stricter safety standards (which are requiring adjustments in how LDCs operate), and increasing energy efficiency programs that

the basis of his analysis, Diewert recommended that the Fisher Ideal index be used for TFP work, although he indicated that the Tornqvist index could also be used as it closely approximates Fisher Ideal index.

Indexes are chained by comparing data for each year to the data from the year immediately preceding it (with the exception of the base year). This method provides a more accurate portrayal of year over year growth.
have a substantial impact on volumes of gas consumed per customer and will continue to impact the services that U.S. LDCs provide.

In summary, the fifteen-year study period overcomes the high variability of year-on-year trends but is also not so long term as to capture “stale” industry trends that would not likely repeat themselves in the future.

2.5 Measuring TFP growth rates

The key finding of an industry TFP study is a numerical estimate of the TFP growth rate over the study period. LEI calculated the growth rates using natural logs, which calculate the year-on-year changes in the TFP Index. LEI then reported the average of the resulting year-on-year growth rates throughout the study period. As further outlined in Figure 12, a mathematical equivalent can be calculated by (i) taking the natural logarithm of the ratio of the last TFP index value divided by the first TFP index value, and (ii) then dividing the resulting value by the number of annual year-on-year observations between the start and end year.

<table>
<thead>
<tr>
<th>Figure 12. Calculating average TFP growth for a study period of 2003-2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average industry TFP growth = (\ln \left(\frac{2017 \text{ industry TFP index}}{2003 \text{ industry TFP index}} \right) / 14)</td>
</tr>
</tbody>
</table>

‘Average growth’ is the more common method of measuring the study-period TFP growth rate and has been used in previous studies presented before the Department. The preference for this method can be attributed to the fact that it calculates the annual growth rates for the TFP index values throughout the study period. However, in certain instances, the ‘average growth’ method can be misleading, most notably when a series exhibits volatility at its endpoints. Because the ‘average growth’ method tracks the exact growth from start to end, if the endpoints of a series are outliers with respect to the trend, then the average method may not give a very good estimate of the underlying TFP trend.

29 The number of annual changes can be calculated as the number of years for which data is collected as part of the TFP study period minus one. In the example, a study period of 2003-2017 has 15 years of data and (15 – 1 = 14) annual changes over that period.

30 For example, the average growth approach was used in the most recent TFP study for NSTAR Electric (D.P.U. 17-05) and National Grid (D.P.U. 18-150).
Therefore, LEI also checked the robustness of the ‘average growth’ method by performing a ‘trend regression’ of the annual TFP growth rates, as discussed further below. The regression is carried out by estimating the linear relationship between the TFP index values and the number of years of the study period (starting from 0), as seen in Figure 13 below. The estimated beta on the time variable is the normalized average annual TFP growth rate.

Figure 13. Trend regression of TFP growth for a study period of 2003-2017

\[
\text{Regress: } \ln(\text{industry TFP index}) = \beta \times T + \alpha
\]

Where:
\[
\beta = \text{trend growth rate for the industry TFP index over the study period}
\]
\[
T = \text{time in years (0, ...,10)}
\]
\[
\alpha = \text{constant term}
\]

The trend regression analysis results in an average TFP growth rate of 0.12% for the U.S. LDC Industry composed of the 83 LDCs; this value is similar to the value established by using the ‘average growth’ method (0.09%). LEI concluded that the index-based approach for calculating the TFP over the 2003 to 2017 timeframe has no start or end-year bias.

2.6 Number of gas utilities

For this Industry TFP Study, LEI aimed to include as many LDCs as LEI could, subject to the quality of data and availability of data over the entire study timeframe. From an initial list of 196 investor-owned LDCs operating in the U.S. as of 2017, LEI selected LDCs with sufficiently complete data over the required timeframe (1998 to 2017). Financial data availability for LDCs does not go as far back as electric utilities in the U.S. More specifically, LDCs file their annual reports to their respective state regulator, and there is no central electronic depository of gas

31 The trend regression method has been used to calculate trend growth rates in Australia and New Zealand. For example, the average growth approach was used in the most recent TFP study for NSTAR Electric (D.P.U. 17-05) and National Grid (D.P.U. 18-150).

32 This TFP result is discussed in detail in Section 3.

33 However, because the ‘trend regression’ method is only a linear estimate of the TFP growth rate, in the case where endpoints are outliers it may not track the actual endpoint to endpoint growth rate as well as the ‘average growth’ method.

34 Data for this period is needed to calculate the capital stock for each LDC for each year. Even though the start year of the TFP study is 2003, the benchmark year must begin earlier in order to properly estimate the capital input quantity. LEI selected 1998 as the benchmark year. Good quality data must be available for proper capital estimation as of 1998 for LDCs included in the TFP Study.
data/information for LDCs (not all LDCs are required to file FERC Form 2). Furthermore, the data collection and public filing policies vary by the state regulator. As such, LEI could not compile the data that would be necessary to include all the LDCs currently operating in the U.S., for the timeframe of this Industry TFP Study.35

In total, LEI was able to collect quality data on 83 LDCs across 31 states, as highlighted in the figure below. This industry peer sample reflects serving 69.5% of the 2017 total sales in the U.S. and 70.0% of customers served across the 48 continental states in the U.S. The 83 LDCs are a robust representation of the industry, representing both small and large utilities with diverse customer mixes, various suburban and urban topologies, as well as diverse customer mixes, and covers LDCs all of the BLS regions.36 Figure 15 lists the LDCs included in LEI’s Industry TFP Study.

Figure 14. States covered in the industry TFP Study

35 For instance, in the New York Department of Public Service, LDCs have annual LDC reports posted on the website starting in 2010 or 2011 only.

36 A sample of 83 firms is more extensive that other TFP studies for U.S. LDC sector. For instance, Pacific Economics Group (“PEG”) covered 58 LDCs in its most recent gas industry TFP study in Ontario, while Concentric had examined 25 LDCs for Enbridge Gas. See Lowry, Mark Newton. “IRM Framework for the Proposed Merger of Enbridge and Union Gas. April 11, 2018 and Concentric Energy Advisors (2013) Incentive Ratemaking Report, prepared for Enbridge Gas Distribution’s 2014 to 2018 IR plan filing (EB-2012-0459, Exhibit A2, Tab 9, Schedule 1).
Figure 15. LDCs included in the industry TFP Study (alphabetical, by region)

<table>
<thead>
<tr>
<th>Midwest</th>
<th>Northeast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Citizens Gas Fuel Company</td>
<td>27 Bay State Gas Company</td>
</tr>
<tr>
<td>2 Columbia Gas of Ohio, Inc.</td>
<td>28 Berkshire Gas Company</td>
</tr>
<tr>
<td>3 Consumers Energy Company</td>
<td>29 Boston Gas Company</td>
</tr>
<tr>
<td>4 DTE Gas Company</td>
<td>30 Brooklyn Union Gas Company</td>
</tr>
<tr>
<td>5 Eastern Natural Gas Company</td>
<td>31 Central Hudson Gas & Electric Corporation</td>
</tr>
<tr>
<td>6 Illinois Gas Company</td>
<td>32 Colonial Gas Company</td>
</tr>
<tr>
<td>7 Indiana Gas Company, Inc.</td>
<td>33 Columbia Gas of Pennsylvania, Inc.</td>
</tr>
<tr>
<td>8 Kansas Gas Service Company, Inc.</td>
<td>34 Connecticut Natural Gas Corporation</td>
</tr>
<tr>
<td>9 Madison Gas and Electric Company</td>
<td>35 Consolidated Edison Company of New York, Inc.</td>
</tr>
<tr>
<td>10 Midwest Natural Gas Corporation</td>
<td>36 Corning Natural Gas Corporation</td>
</tr>
<tr>
<td>11 Midwest Natural Gas, Inc.</td>
<td>37 Fillmore Gas Company, Inc.</td>
</tr>
<tr>
<td>12 North Shore Gas Company</td>
<td>38 KeySpan Gas East Corporation</td>
</tr>
<tr>
<td>13 Northern Illinois Gas Company</td>
<td>39 Liberty Utilities (EnergyNorth Natural Gas) Corp.</td>
</tr>
<tr>
<td>14 Northern Indiana Public Service Company</td>
<td>40 National Fuel Gas Distribution Corporation</td>
</tr>
<tr>
<td>15 Northern States Power Company - WI</td>
<td>41 New Jersey Natural Gas Company</td>
</tr>
<tr>
<td>16 Ohio Gas Company</td>
<td>42 New York State Electric & Gas Corporation</td>
</tr>
<tr>
<td>17 Ohio Valley Gas Corporation</td>
<td>43 Niagara Mohawk Power Corporation</td>
</tr>
<tr>
<td>18 Peoples Gas Light and Coke Company</td>
<td>44 NSTAR Gas Company</td>
</tr>
<tr>
<td>19 Pike Natural Gas Co</td>
<td>45 Orange and Rockland Utilities, Inc.</td>
</tr>
<tr>
<td>20 Southern Indiana Gas and Electric Company</td>
<td>46 PECO Energy Company</td>
</tr>
<tr>
<td>21 Spire Missouri Inc.</td>
<td>47 Philadelphia Gas Works Co.</td>
</tr>
<tr>
<td>22 Superior Water, Light and Power Company</td>
<td>48 Pike County Light and Power Company</td>
</tr>
<tr>
<td>23 The East Ohio Gas Company</td>
<td>49 Public Service Electric and Gas Company</td>
</tr>
<tr>
<td>24 Vectren Energy Delivery of Ohio, Inc.</td>
<td>50 South Jersey Gas Company</td>
</tr>
<tr>
<td>25 Wisconsin Gas LLC</td>
<td>51 Southern Connecticut Gas Company</td>
</tr>
<tr>
<td>26 Wisconsin Power and Light Company</td>
<td>52 UGI Penn Natural Gas, Inc.</td>
</tr>
<tr>
<td>53 UGI Utilities, Inc.</td>
<td></td>
</tr>
<tr>
<td>54 Yankee Gas Services Company</td>
<td>55 Vermont Gas Systems, Inc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>South</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 Atlanta Gas Light Company</td>
<td>74 Avista Corporation</td>
</tr>
<tr>
<td>57 Atmos Energy Company</td>
<td>75 Cascade Natural Gas Corporation</td>
</tr>
<tr>
<td>58 Baltimore Gas and Electric Company</td>
<td>76 Cheyenne Light, Fuel and Power Company</td>
</tr>
<tr>
<td>59 Black Hills Energy Arkansas, Inc.</td>
<td>77 Pacific Gas and Electric Company</td>
</tr>
<tr>
<td>60 Bluefield Gas Company</td>
<td>78 Puget Sound Energy, Inc.</td>
</tr>
<tr>
<td>61 Columbia Gas of Kentucky, Incorporated</td>
<td>79 Qwestar Company</td>
</tr>
<tr>
<td>62 Columbia Gas of Maryland, Incorporated</td>
<td>80 San Diego Gas & Electric Company</td>
</tr>
<tr>
<td>63 Columbia Gas of Virginia, Incorporated</td>
<td>81 Sierra Pacific Power Company</td>
</tr>
<tr>
<td>64 Delta Natural Gas Company, Inc.</td>
<td>82 Southern California Gas Company</td>
</tr>
<tr>
<td>65 Duke Energy Kentucky, Inc.</td>
<td>83 Wyoming Gas Company</td>
</tr>
<tr>
<td>66 Hope Gas, Inc.</td>
<td></td>
</tr>
<tr>
<td>67 Louisville Gas and Electric Company</td>
<td></td>
</tr>
<tr>
<td>68 Mountaineer Gas Company</td>
<td></td>
</tr>
<tr>
<td>69 Peoples Gas System</td>
<td></td>
</tr>
<tr>
<td>70 Public Service Company of North Carolina, Inc.</td>
<td></td>
</tr>
<tr>
<td>71 St. Joe Natural Gas Co, Inc.</td>
<td></td>
</tr>
<tr>
<td>72 Texas Gas Service Company, Inc.</td>
<td></td>
</tr>
<tr>
<td>73 Virginia Natural Gas, Inc.</td>
<td></td>
</tr>
</tbody>
</table>
As mentioned earlier, for the Northeast Region, LEI included 29 LDCs in its Industry TFP Study. These 29 LDCs cover almost all the states in the region, except for Maine and Rhode Island, as shown below. Similar to the Industry TFP Study, the LDCs in the Northeast Region represent both small and large gas utilities with different suburban and urban topologies. Figure 16 shows the LDCs included in the Industry TFP Study in the Northeast Region by state.

Figure 16. Map of the location of LDCs in the Northeast region

NY:
- Brooklyn Union Gas Company
- Central Hudson Gas & Electric Corporation
- Consolidated Edison Company of New York, Inc.
- Corning Natural Gas Corporation
- Fillmore Gas Company, Inc.
- KeySpan Gas East Corporation
- National Fuel Gas Distribution Corporation
- New York State Electric & Gas Corporation
- Niagara Mohawk Power Corporation
- Orange and Rockland Utilities, Inc.

VT:
- Vermont Gas Systems, Inc.

NH:
- Liberty Utilities (EnergyNorth Natural Gas) Corp.

MA:
- Bay State Gas Company
- Berkshire Gas Company
- Boston Gas Company
- Colonial Gas Company
- NSTAR Gas Company

CT:
- Connecticut Natural Gas Corporation
- Southern Connecticut Gas Company
- Yankee Gas Services Company

NJ:
- New Jersey Natural Gas Company
- South Jersey Gas Company
- Public Service Electric and Gas Company

PA:
- Columbia Gas of Pennsylvania, Inc.
- PECO Energy Company
- Philadelphia Gas Works Co.
- Pike County Light and Power Company
- UGI Penn Natural Gas, Inc.
- UGI Utilities, Inc.
3 TFP methodology and data sources

Selecting the appropriate inputs and outputs is a crucial part of a TFP study. Intuitively, selected inputs and outputs would be those that most accurately represent the physical process behind the distribution of gas. At the most basic level, inputs to a TFP study should reflect capital deployed and OM&A expenditures. If data was available, the OM&A input metric could be broken down further into sub-categories like labor, materials, services, etc. However, such data is not readily and consistently available for U.S. LDCs over the 15-year study timeframe, and therefore LEI used a two-input model formulation: capital and non-capital (OM&A). Outputs should reflect key products or services. For this Industry TFP Study, LEI determined it would be best to use a single output metric, namely the total number of customers served by the distribution network of each LDC, as discussed in Section 3.2.

3.1 Overview of data sources

LEI’s analysis is primarily based on company-level data provided by SNL Financial, which sources information directly from state LDC filings, FERC Form 2, and the EIA. In the instances where there is missing data from SNL Financial, LEI supplemented the data either based on FERC Form 2 submissions or review of state regulatory filings for particular years. In several instances, LEI had to interpolate missing data points (for example, when one year of data was missing, but there was complete data for the year before and after the missing data). LEI also relied on data from the EIA, the U.S. Bureau of Economic Analysis (“BEA”), the U.S. BLS, the Federal Reserve, and Moody’s, as described further in the subsections below.

3.2 Output

LEI used the number of customers served by the distribution network(s) as the output measure. A key advantage of using this dataset is that it is a numerical data point which is both available and consistently measured across LDCs. Gas sales, which LEI also considered as an output, are affected by weather patterns, which can vary considerably across geographies and years and therefore cause some distortion to the resulting TFP trends. Additionally, utilities build systems to serve customers and not necessarily the specific amount of gas consumed per customer as that is likely to change with time. Figure 17 below shows the trends in the number of customers and gas sales, as well as their corresponding growth rates. Notably, the use of total customers served is a common practice among TFP studies for the LDC industry.37

37 Examples of gas TFP studies that used number of customers as output measure include another consultant’s TFP studies on the following (i) IRM Framework for the Proposed Merger of Enbridge and Union Gas (April 2018), (ii) X factor Research for Fortis PBR Plans (January 2014), and (iii) Incentive Ratemaking Report for Enbridge Gas Distribution (June 2013).
Figure 17. Total number of customers served vs. gas sales for the U.S. LDC industry in the Industry TFP Study (reflecting all 83 LDCs studied)

Figure 18. Growth rate trends of the number of customers served vs. gas sales for the U.S. LDC industry in the Industry TFP Study (reflecting all 83 LDCs studied)
The number of customers was compiled at the operating subsidiary level from EIA-176, which includes gas customers by type, such as commercial, residential, and industrial customers. This dataset includes customers who have competitive retail suppliers for the gas commodity but are using the distribution network (i.e., unbundled utility customers). This is important to note because this Industry TFP Study is only looking at the productivity of the distribution network, and is not impacted by sales, which can be affected in some states by retail competition laws.

3.3 Inputs

LEI used a two-input model consisting of capital and non-capital (or total OM&A) inputs. Both inputs were estimated based on monetary data taken from the annual financial reports and regulatory filings. LEI primarily relied on data at the operating subsidiary level from the state LDC and FERC Form 2 filings compiled by SNL Financial. When data were missing and not available directly through the SNL Financial database, LEI conducted additional research (including outreach to state regulatory bodies and manually inputted the data from the state LDC filings or FERC Form 2). The conversion of financial asset data and OM&A cost data into capital quantities and OM&A quantities, respectively, involved several steps that are described further below.

3.3.1 OM&A input

OM&A inputs reflect the non-capital related expenses associated with storage, distribution customer service account, sales, and administration and general expenses. OM&A costs were collected from Annual LDC filings by the expense category. LEI used all OM&A expense categories except for transmission and fuel procurement because those categories are not directly relevant to physical productivity of the distribution function of LDCs, nor part of the distribution rate design under PBR (for example, fuel procurement is generally treated as a pass-through cost, and potentially subject to its own set of rate incentives). Administration expenses are the largest share in total OM&A expenses, averaging at 39% per year, followed by distribution expenses, which account for another 29% of total OM&A costs at the industry aggregate level). Figure 19 shows the breakdown of the OM&A costs recorded for the industry in this TFP Study. The aggregate total of OM&A costs in nominal terms (not yet converted to input quantities) for the 83 LDCs in the U.S. industry sample grew at an average rate of 3.3% per year over the 2003-2017 period.

39 If a company does not have interstate pipelines it is solely under the jurisdiction of the state public utility commissions and would not file FERC Form 2 which is for companies under federal jurisdiction given that they have interstate pipelines.
It is important to note that for LDCs, labor costs are reflected as part of OM&A expenses. Labor costs, as a separate expense, were not available for all gas utilities over the sample period in this Industry TFP Study. However, for purposes of developing an appropriate deflator for labor (as part of the OM&A input price index), LEI created an estimate of labor expenses for a sub-set of utilities (for those that did release employee data) and used that to derive the typical industry share of labor costs in total OM&A.

![Figure 19. Reported OM&A costs of the 83 LDCs in LEI’s U.S. Industry sample (nominal $)](image)

Sources: LDC state filings, FERC Form 2, and SNL Financial

To create a bottom-up estimate of the labor cost share, LEI first collected available data for the average number of employees for each gas utility that reported such information. Such data were available for 41 LDCs over the 2007 to 2017 timeframe. Then, LEI used the BLS Employer Cost Index (“ECI”) for Total Compensation (which is available on a regional basis for the gas utility industry) to get the compensation rate (note that the ECI was also used as the labor price index). To calculate an annual labor cost estimate, the average number of employees was multiplied by the compensation rate. LEI then compared the yearly labor cost estimate to the total OM&A costs. LEI found that approximately 54% of total O&M costs is attributed to labor on average for the U.S. LDC industry.\(^4\) This labor cost share (54%) implies a non-labor cost share of 46%. These

\(^4\) LEI tested other sensitivities with different labor cost weights to examine the robustness of the labor to non-labor relationship, and the impact of these variations on overall TFP results was not material. Based on these tests, if LEI assumed a 49% labor cost share, the OM&A input price would grow slower, and the OM&A quantity growth rate would increase by 0.07 percentage points (from 0.52% to 0.59%), which would increase
cost shares were used to combine (i.e., weight) the labor and non-labor price indices into a single OM&A price index.

As noted above, LEI used the regional ECI as the labor cost index. LEI used the GDP-PI as the proxy for inflation in non-labor OM&A expenses because it is representative of various materials and services that LDCs would have deployed. The GDP-PI and the ECI are then combined based on the non-labor and labor cost shares, as shown below in Figure 20.

Figure 20. Input price index for OM&A

Source: BEA, BLS, LEI calculations

3.3.2 Capital input quantity

LEI employed the monetary approach for calculating the capital input quantity for the LDCs in this Industry TFP Study. The calculation of the capital input quantity under a monetary approach centers around an estimate of the real capital stock of each LDC. This capital stock includes a mix of gas assets classified under storage plant, distribution plant, and general plant. For the capital input quantity, LEI could not merely take the capital expenditures (“capex”) from financial data, the TFP growth by only 0.04 percentage points. On the other hand, if LEI assumed a 59% labor cost share, the OM&A input price would grow faster, and the OM&A quantity would decrease by 0.07 percentage points (from 0.52% to 0.45%), and that would reduce the TFP growth rate by 0.03 percentage points. Furthermore, LEI conducted a statistical analysis of the sample data on the aggregate industry basis, and it shows that the share of labor cost to the total OM&A costs did not materially change over time during the sample period.
because capex is spent in one year, but the physical capital assets that such capex finances will be used for many years.

3.3.2.1 Method for estimating the capital input quantity

There are two approaches for calculating the capital input quantity: (i) a physical or direct approach and (ii) a monetary or indirect approach. The advantage of the monetary approach is that the monetary value of the firm’s capital equipment is aggregated using monetary value as the unifying element. Thus, the monetary approach allows for consideration of various capital assets into one capital input quantity. The monetary method also directly accounts for the magnitude of improvements made to capital assets from time-to-time.

The shortcoming of the monetary method is that financial data on capital spending is typically not reported on a disaggregated basis, for each piece of equipment. LDCs normally only report the change in asset value (gross book value) for their entire stock of assets. The values of the new asset are added (or subtracted, when an asset is retired) based on its original historical cost at the time of the acquisition, and therefore the gross book value mixes assets acquired over different time periods (which makes it challenging to ascertain a “real dollar” value). Furthermore, the financial data typically does not get adjusted for the condition of the capital equipment. Thus, one must apply exogenous assumptions regarding the physical deterioration of the capital stock over time under the monetary approach.

The physical approach has several advantages if a metric could be identified that comprehensively and accurately describes the capital assets of an LDC and the services that such capital assets provide in relation to the distribution business of the LDC. If such a measure were available, it would not need to be further manipulated (for example, one would not need to deflate/inflate historical asset value) and presumably, it could reflect the physical capability directly (so then no further assumptions would need to be made as to physical deterioration or depreciation of the capital employed).

However, such a measure does not exist for LDCs in the U.S., as there is no single measure reported by LDCs that uniformly and comprehensively estimates how different capital equipment that an LDC may deploy contributes to the distribution services that an LDC provides for its customers (for example, mains are typically measured and reported by LDCs in terms of rated pressure levels and miles, while compressor (pumping) stations are described by their size and number of compressors, and services and meters are typically characterized by the number of installations). For this reason, LEI relied on the monetary approach.

3.3.2.2 Physical depreciation of capital under the monetary approach

Physical deterioration (decay or depreciation) is generally very limited in the LDC industry as the majority of the capital equipment deployed is not electrical or mechanical. Main and service pipelines are the largest capital assets of an LDC and can provide service for up to 75 years and
over 50 years, respectively, according to various depreciation studies that LEI reviewed (see Section 3.3.2.3 for additional information). Also, according to a study for the INGAA Foundation, pipelines can tolerate some degree of deterioration without failing because of the inherent safety factors included in their design. In addition, the study stated that “the fitness of a pipeline for service does not necessarily expire at some point in time.” In fact, “a well maintained and periodically assessed pipeline can safely transport natural gas indefinitely.”

Therefore, LEI chose to use the classic One Hoss Shay (“OHS”) depreciation profile, which assumes that capital assets can provide the same level of capital ‘service’ over its entire service life. Under OHS, it is assumed that an asset provides a constant level of services over the lifetime of that asset, meaning the asset’s ability to provide services does not deteriorate with age. This is not to be confused with accounting depreciation, in which the financial value of an asset declines over its lifetime. The Department has already recognized the appropriateness of the OHS profile for other network industries, and this profile has also been used by other experts conducting LDC TFP studies.

Service life of capital under the monetary approach

LEI estimated the average service life of the LDC capital stock by looking at technical studies of different capital assets used by LDCs.

LEI calculated an average service life of 51 years for U.S. LDCs. This 51-year average service life is based on the weighted arithmetic average of typical LDC’s distribution asset lives. To derive this number, LEI first reviewed the average service life of different gas assets from 17 publicly available depreciation studies, including the Company’s 2013 depreciation study. These

42 Ibid, page 5.

43 Ibid, page 5.

44 Studies that use OHS include NSTAR Electric and National Grid’s most recent filings to the Department. In addition, TFP studies conducted for cases in Alberta, Ontario, the UK, Australia, and New Zealand have all utilized OHS.

45 These depreciation studies include the following: Corning Natural Gas Corporation (2010); Great Plains Natural Gas (2006 & 2010 Update); Florida Public Utilities Company (2014); Intermountain Gas Company (2003); MidAmerican Energy (2015); Montana-Dakota Utilities Co. Gas Division (2015); Narragansett Electric Company (2017); National Fuel Gas (2018); NSTAR Gas Company (2013); Oklahoma Gas and Electric Company (2018); Peoples TWPP LLC (2013); Pacific Gas and Electric Company (2006); Piedmont Natural Gas Company, Inc. (2004); Sierra Pacific Power Company Gas Department (2015); Southern California Gas Company (2010); and UGI Penn Natural Gas, Inc. (2016).
Depreciation studies are generally conducted by independent engineering firms hired by LDCs periodically. These independent engineering firms estimate typically the service life based on “informed judgment which incorporated analyses of historical plant retirement data for a given period, a review of the company practice, and outlook as they relate to plant operation and retirement, and consideration of current practice in the gas industry, including knowledge of service lives and net salvage estimates used for other gas companies.”

According to these depreciation studies, the process of calculating the service lives consists of gathering historical data for plant accounts or depreciable groups, assessing the history through the use of generally recognized practices, and forecasting the survivor characteristics for each depreciable group based on the evaluation of the historical data analyses and the probable future. These depreciation studies report service lives for various capital equipment and assets, including mains, services, meters, house regulators, structures and improvements, to name a few. The graph below shows the range of service lives specified for each type of gas asset across the 17 depreciation studies examined by LEI.

Figure 21. Range of service life of select gas distribution assets (years)

![Range of service life of select gas distribution assets](source: Various depreciation studies (see footnote 45 for the list))

Then, LEI gathered the gross value of the distribution plant of 37 gas utilities broken down by these gas asset classes during the benchmark year (1998). This information allowed LEI to determine the share of each gas asset relative to the total gross value of the distribution plant. Not surprisingly, mains and services represent over 81% of the total gross value of the plant, as

shown in the figure below. The shares were used then to weight the average lives by asset class to get to an aggregate distribution level figure for the service life.

Figure 22. Share of each asset to the total gross value of the distribution plant

<table>
<thead>
<tr>
<th>Asset Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mains</td>
<td>48%</td>
</tr>
<tr>
<td>Services</td>
<td>33%</td>
</tr>
<tr>
<td>Meters</td>
<td>6%</td>
</tr>
<tr>
<td>Meter Installations</td>
<td>8%</td>
</tr>
<tr>
<td>Others</td>
<td>5%</td>
</tr>
</tbody>
</table>

Source: LEI analysis based on multiple LDC filings and FERC Form 2

3.3.2.4 Deriving the capital input quantity

LEI obtained the quantity of capital stock using the perpetual inventory equation, which has been adopted in numerous TFP studies used in ratemaking globally.48 To calculate the capital stock in the current year (K_t), the perpetual inventory equation takes the end of year capital stock (gross book value) from the previous year (K_{t-1}) and adds in the gross book value of new additions (I) and deducts the gross book value of retirements (R) in year t. The new additions and retirement data were collected directly from the SNL dataset or directly from state LDC filings or FERC Form 2. However, because the equation is incorporating the monetary value of assets of different vintages (and therefore in nominal dollars from different years), the capital additions and retirements must be deflated. LEI used a construction cost index (BLS’s Producer Price Index (“PPI”) for construction materials) to deflate the assets into real (1998) dollars; the trend in BLS PPI is illustrated in the figure below.49

48 This approach has been used in TFP studies that were ultimately accepted in Alberta, Australia, the United Kingdom, and Massachusetts.

49 Other U.S. TFP studies have frequently used the Handy Whitman Index (“HWI”). LEI selected the BLS PPI index over the HWI because of concerns around the observed escalation and volatility in the HWI index in the last ten to fifteen years. LEI found the trends in the BLS PPI for construction materials to be more appropriate for purposes of deflating and inflating historical capital costs to a single unifying cost basis.
Because new additions are added in nominal dollars at time t, annual capex values are divided by the BLS PPI index also at time t. However, under the OHS approach, the retirements need to be re-based to reflect their full real monetary value when they occur at the end of their service life (i.e., t minus the average service life s). As noted above, LEI assumed average service life of 51 years (therefore s is equal to 1966 for a retirement that is taking place in 2017).

The equation for estimating the real capital quantity in any given year t under the perpetual inventory formula is shown below:

$$K_t = K_{t-1} \frac{I_t}{BLS_PPI_t} - \frac{R_t}{BLS_PPI_{t-s}}$$

The first year for which one estimates the capital input quantity is called the “Benchmark Year.” The best available information to construct a benchmark value is the gross book value of all capital assets and equipment, which is made up of assets of different vintages. The capital stock measure is sensitive to the age of the various capital components in the gross book value. To improve the precision of the capital stock estimates for the years in the TFP study, it is useful to select a benchmark year that is well before the beginning of the TFP study period (in the case of LEI’s Industry TFP Study, the first year of the study period is 2003).

Data for U.S. gas utilities are either non-existent or incomplete before the 1990s; therefore, LEI chose 1998 as the benchmark year based on data completeness. The capital stock for LDCs in
1998 is determined by dividing the estimated gross book value of the entire gas distribution asset base in 1998 by the 51-year average of BLS PPI values for 1998, and the previous 51 years (51 years is the average service life). Once the benchmark year capital quantity is estimated, the capital flow in each subsequent year is added by the new capital additions (divided by the BLS PPI value in the year that capital was added) minus any retirements (divided by the BLS PPI value in the year that capital was initially added, which is assumed to be 51 years prior to the retirement date). Figure 24 shows the real capital stock used in this Industry TFP Study from 2003 to 2017 for the industry (aggregation of the capital stock of all 83 LDCs).

Figure 24. Real capital quantity from 2003 to 2017 for the U.S. LDCs, 1998 dollar terms

3.3.3 Capital input price index

The capital input price measures the trend in the implicit rental price corresponding to a unit of capital quantity. Unlike the OM&A input price index, the capital input price index is not used to deflate the capital input quantity. Instead, the capital input price index is used to weight the capital input quantity in the total input quantities over time (mechanically, this is achieved by multiplying the capital input quantity by the capital input price index, which results in the total
capital quantity that is then represented in the calculation of the composite input index and the resulting TFP index).

LEI used the implicit rental price formula developed in a seminal paper by Christensen and Jorgenson (1969) to estimate the capital input price index, which has also been used in numerous TFP studies.

The price of capital under this approach is based on an equilibrium relationship between the price an investor is willing to pay for an asset and the after-tax expected value of services that the asset will provide over the asset’s lifetime. This relationship is called the implicit rental price formula and has the following mathematical representation:

\[
PK_t = \frac{1 - uz}{1 - u} (r - i) \left[1 - \left(\frac{1 + i}{1 + r} \right)^{51} \right]^{-1} BLS_PPI_{t-1}
\]

The variable \(u \) represents the corporate income tax rate, the variable \(z \) represents the present value of tax depreciation charges on one dollar of investment in distribution assets, the variable \(r \) represents the forward-looking cost of capital, and the variable \(i \) represents the forward-looking inflation rate. The service life (51 years) is also used in the implicit rental price formula.

Corporate income tax rate (u): LEI used the applicable average corporate tax rate in each state for \(u \) for the 2003-2017 period. A 35% federal tax rate was used for states with no state tax. These states include Nevada, Ohio, Texas, Washington, and Wyoming.

50 The exogenous approach to weighting the capital input quantity is sometimes referred to as the “direct” approach as the annual cost of using capital inputs can be measured directly by applying the sum of an estimated depreciation rate and a rate reflecting the opportunity cost of capital to the value of the assets. This is different from an endogenous approach, which assumes that the capital cost weighting is the residual of the utility’s total revenue minus OM&A.

Present value of tax depreciation charges (z): This represents the present value of future depreciation on new investment. This component is used because depreciation for tax purposes typically takes place over a much shorter period than what is allowed for ratemaking purposes. z is a function of the tax depreciation method used, the service life, and the weighted average cost of capital (“WACC”). LEI applied the sum of years’ digits method, and the resulting value for this study was 0.683. z is summarized as follows:

$$z = \frac{2}{RT} \left[1 - \left(\frac{1}{R(T + 1)} \right) \left[1 - \left(\frac{1}{1 + R} \right)^{T+1} \right] \right]$$

Forward-looking cost of capital (“WACC”) and inflation rate (r): A common method is to assume that investor’s forward-looking real rate of return (cost of capital less the inflation rate) is constant through time. This method produces a relatively stable input price series (in contrast to using just the current year’s WACC and inflation rates). The resulting average WACC\(^52\) of 7.27% and expected long-term inflation rate\(^53\) of 1.98% (over the study timeframe) was then used in the implicit rental price formula for all U.S. LDCs.

\(^{52}\) In calculating the WACC, the average cost of debt is based on the average Moody’s seasoned AAA bond yield, published by the Federal Reserve Bank of St. Louis (Source: Moody’s Seasoned Aaa Corporate Bond Yield. https://fred.stlouisfed.org/series/AAA). The cost of equity is based on the average approved ROE of U.S. gas utilities over time (Source: reported ROEs in SNL Financial). The debt/equity ratio was assumed to be 50%, based on an average of reported debt/equity ratios for U.S. gas utilities. (Source: SNL Financial, Rate Case History. Average Rate of Return on Equity).

4 TFP results

Growth in the industry’s productivity is measured by the difference between the growth rate of the industry’s outputs and the growth rate of the industry’s inputs. TFP for the U.S. LDC Industry grew by 0.09% per year on average over the 2003-2017 timeframe. The slightly positive value is due to an output index (0.73% per year on average) that grew marginally faster than the composite input index (0.65% per year on average). Notably, the TFP trend for the U.S. is higher than the TFP calculated over the same timeframe for the LDCs in the Northeast Region (-0.39% per year on average). Figure 26 shows the TFP growth rates for the U.S. and Northeast Region. The succeeding sections will discuss the TFP results in detail.

<table>
<thead>
<tr>
<th>Year</th>
<th>U.S.</th>
<th>Northeast Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>0.73%</td>
<td>1.43%</td>
</tr>
<tr>
<td>2005</td>
<td>-1.80%</td>
<td>-1.01%</td>
</tr>
<tr>
<td>2006</td>
<td>4.28%</td>
<td>4.57%</td>
</tr>
<tr>
<td>2007</td>
<td>-2.32%</td>
<td>-2.82%</td>
</tr>
<tr>
<td>2008</td>
<td>-0.94%</td>
<td>-1.89%</td>
</tr>
<tr>
<td>2009</td>
<td>-1.60%</td>
<td>-2.03%</td>
</tr>
<tr>
<td>2010</td>
<td>0.64%</td>
<td>0.40%</td>
</tr>
<tr>
<td>2011</td>
<td>0.55%</td>
<td>-0.33%</td>
</tr>
<tr>
<td>2012</td>
<td>1.34%</td>
<td>-2.01%</td>
</tr>
<tr>
<td>2013</td>
<td>0.39%</td>
<td>1.71%</td>
</tr>
<tr>
<td>2014</td>
<td>-0.90%</td>
<td>-3.36%</td>
</tr>
<tr>
<td>2015</td>
<td>2.56%</td>
<td>1.46%</td>
</tr>
<tr>
<td>2016</td>
<td>-0.26%</td>
<td>0.89%</td>
</tr>
<tr>
<td>2017</td>
<td>-1.45%</td>
<td>-2.42%</td>
</tr>
<tr>
<td>Average</td>
<td>0.09%</td>
<td>-0.39%</td>
</tr>
</tbody>
</table>

4.1 U.S. Industry trends

4.1.1 Output index

The average growth rate in the number of customers (output) for the industry was 0.73% per year on average. Figure 27 below shows that customer growth has been relatively consistent over the 2003-2017 study timeframe, except for slower customer growth between 2007 and 2009, which corresponds with the economic recession in the U.S. Moreover, in all years, customer growth has remained positive.
4.1.2 Input index

The composite input index (see yellow line in the figure above, labeled as “Input-Total”) is based on the combination of the capital and OM&A input quantity indices. The average growth rate in the OM&A input quantity index for the industry between 2003-2017 was 0.65% per year, which includes both positive and negative values for year-over-year changes, as shown in Figure 28 below. Until 2013, OM&A input quantities for the U.S. LDC industry were growing more rapidly than capital input quantities. Over the study timeframe, OM&A input quantities grew at an annual average rate of 0.52%. The capital input quantity index grew between 2003 and 2017 at an annual average rate of 0.76%. Capital quantities have grown at a faster rate in the last few years, but the rate of change has been positive throughout the entire forecast. And importantly, the average growth rate for capital input quantities is consistent with the average rate of growth observed in miles of mains for the U.S. LDC industry (0.77% per year on average over the 2003-2017 timeframe, in the aggregate for the 83 LDCs).54

54 Increased capital investment can be attributed partly to the new regulations enacted by the U.S. Pipeline and Hazardous Materials Safety Administration requiring utilities to establish and implement a Distribution Integrity Management Program by August 2011.
To get the total (composite) input index, LEI used the capital to OM&A split of 52%/48%, as implied by the OM&A cost versus total capital cost. This resulted in a total input quantity index that has an annual average growth rate over the 2003-2017 timeframe of 0.65% per year.

4.1.3 TFP and PFP growth

The partial and total factor productivity growth rates are summarized below in Figure 28. TFP for the U.S. LDC industry grew by 0.09% per year on average over the 2003-2017 timeframe. This result indicates the quantity of output was increasing marginally faster than the quantity of inputs.

<table>
<thead>
<tr>
<th>Year</th>
<th>Customers</th>
<th>Capital</th>
<th>OM&A</th>
<th>Total</th>
<th>Capital</th>
<th>OM&A</th>
<th>TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>[B]</td>
<td>[C]</td>
<td>[D]</td>
<td></td>
<td>[A-B]</td>
<td>[A-C]</td>
<td>[A-D]</td>
</tr>
<tr>
<td>2003-2004</td>
<td>1.08%</td>
<td>0.97%</td>
<td>-0.30%</td>
<td>0.34%</td>
<td>0.10%</td>
<td>1.38%</td>
<td>0.73%</td>
</tr>
<tr>
<td>2004-2005</td>
<td>1.26%</td>
<td>0.12%</td>
<td>6.07%</td>
<td>3.06%</td>
<td>1.14%</td>
<td>-4.81%</td>
<td>-1.80%</td>
</tr>
<tr>
<td>2005-2006</td>
<td>0.79%</td>
<td>0.06%</td>
<td>-7.20%</td>
<td>-3.49%</td>
<td>0.73%</td>
<td>7.99%</td>
<td>4.28%</td>
</tr>
<tr>
<td>2006-2007</td>
<td>1.00%</td>
<td>0.12%</td>
<td>6.78%</td>
<td>3.33%</td>
<td>0.88%</td>
<td>-5.78%</td>
<td>-2.32%</td>
</tr>
<tr>
<td>2007-2008</td>
<td>0.36%</td>
<td>0.34%</td>
<td>2.32%</td>
<td>1.50%</td>
<td>0.02%</td>
<td>-1.96%</td>
<td>-0.94%</td>
</tr>
<tr>
<td>2008-2009</td>
<td>0.03%</td>
<td>0.25%</td>
<td>3.11%</td>
<td>1.64%</td>
<td>-0.22%</td>
<td>-3.07%</td>
<td>-1.60%</td>
</tr>
<tr>
<td>2009-2010</td>
<td>0.28%</td>
<td>0.64%</td>
<td>-1.40%</td>
<td>-0.36%</td>
<td>-0.36%</td>
<td>1.68%</td>
<td>0.64%</td>
</tr>
<tr>
<td>2010-2011</td>
<td>0.67%</td>
<td>0.63%</td>
<td>-0.41%</td>
<td>0.11%</td>
<td>0.04%</td>
<td>1.08%</td>
<td>0.55%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>0.74%</td>
<td>0.44%</td>
<td>-1.69%</td>
<td>-0.60%</td>
<td>0.30%</td>
<td>2.43%</td>
<td>1.34%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>0.33%</td>
<td>-0.23%</td>
<td>0.12%</td>
<td>-0.06%</td>
<td>0.56%</td>
<td>0.21%</td>
<td>0.39%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>0.35%</td>
<td>1.63%</td>
<td>0.84%</td>
<td>1.24%</td>
<td>-1.28%</td>
<td>-0.49%</td>
<td>-0.90%</td>
</tr>
<tr>
<td>2014-2015</td>
<td>2.08%</td>
<td>1.83%</td>
<td>-2.99%</td>
<td>-0.47%</td>
<td>0.25%</td>
<td>5.07%</td>
<td>2.56%</td>
</tr>
<tr>
<td>2015-2016</td>
<td>0.61%</td>
<td>1.35%</td>
<td>0.33%</td>
<td>0.87%</td>
<td>-0.75%</td>
<td>0.27%</td>
<td>-0.26%</td>
</tr>
<tr>
<td>2016-2017</td>
<td>0.68%</td>
<td>2.52%</td>
<td>1.71%</td>
<td>2.14%</td>
<td>-1.84%</td>
<td>-1.03%</td>
<td>-1.45%</td>
</tr>
</tbody>
</table>

Average 0.73% 0.76% 0.52% 0.65% -0.03% 0.21% 0.09%

As previously described, a PFP index evaluates the trend in a single input. The PFP for capital resulted in an annual average growth rate of -0.03% for the U.S. LDC industry. A negative PFP for capital indicates that the quantity of capital inputs grew faster than customers. The PFP for OM&A resulted in an annual average growth rate of 0.21% for the U.S. LDC industry, which suggests that the number of customers was increasing faster than the quantity of OM&A inputs.
4.2 Northeast Region TFP trends

The growth in Northeast Region TFP was calculated to be -0.39% over the 2003-2017 timeframe, as illustrated in the figure below. This indicates that the inputs are growing faster than the outputs for LDCs in the Northeast Region.

There are three factors explaining the differences in observed TFP trends for the U.S. versus Northeast Region. The primary input-related driver is the much higher rate of capital quantity input growth among LDCs in the Northeast Region, as compared to the rest of the U.S. Since 2003, the Northeast Region experienced a much higher growth rate in the capital inputs as compared to the national average rate (1.33% per annum for the Northeast Region versus 0.76% per annum for the U.S.). The Northeast Region’s capital PFP is -0.68% over the study timeframe, compared to -0.03% for the U.S.

In addition to the capital input quantity, the OM&A input quantity is also growing at a slightly higher rate in the Northeast Region as compared to the national (U.S.) average (0.52% per year for the national average, compared to 0.71% per year for the Northeast Region average). The
Northeast Region’s OM&A PFP growth rate is -0.06% over the study timeframe, compared to an OM&A PFP growth rate of 0.21% for the U.S.

Finally, the pace of output growth has been slower on average over the study timeframe in the Northeast Region versus the U.S.-wide trends, as seen by comparing the output growth trends in Figure 28 and Figure 29.

Figure 30. Chained Fisher Ideal indices for quantities of inputs and outputs for the Northeast region LDC industry

4.3 Relevance of the Northeast Region TFP for setting the Company’s X factor

LEI recommends a Northeast Region 55 TFP growth rate for setting the X factor for NSTAR Gas. There are many drivers for total factor productivity. Specifically, for the LDC sector, it is important to consider economies of scale, technology, and output growth. LDCs in the Northeast Region have generally smaller gas pipeline systems with fewer customers, which indicates more

55 The Northeast region as defined by the BLS includes Connecticut, Maine, Massachusetts, New Hampshire, New York, New Jersey, Pennsylvania, Rhode Island, and Vermont.
limited economies for scale.56 LDCs in the Northeast Region have mains that are made up of a greater proportion of cast (or wrought) iron. Finally, as noted above, LDCs in the Northeast Region have recently experienced slower growth in the number of customers.

In assessing whether LDCs in the Northeast Region operate at a different scale than their peers in other parts of the U.S., LEI examined the number of customers for each LDC as of 2017 by region. The average number of customers per LDC outside the Northeast Region (669,822 customers per LDC) was nearly 65\% higher than the average customer count for LDCs in the Northeast Region (408,082 customers per LDC). This difference in LDC size has been consistently over the past 15 years. NSTAR Gas may be one of the larger LDCs in the Northeast Region, but far smaller than some of its peers in the rest of the U.S. This information suggests that the opportunities for TFP growth related to economies of scale will differ between the Northeast Region and the rest of the U.S.

The technology used by the LDCs in the Northeast Region is also different from that used by LDCs in other parts of the U.S., as evidenced by the higher proportion of cast/wrought iron mains in the Northeast Region (see Figure 6 on page 10 of Section 1.2). The average share of cast/wrought iron mains in use in the 8 states of Northeast Region totaled 11.0\%. In contrast, the average share of cast/wrought iron in use by LDCs in the other 39 continental U.S. states averaged only 3\%. The higher share of main pipelines made from cast/wrought iron distinguishes the technology profile of the Northeast Region LDCs from other LDCs, and such technology differences will affect total factor productivity trends.

Growth in the number of outputs that a firm can produce is major driver of total factor productivity. Over the 15-year timeframe, the average annual growth rate in the total customers served by the LDCs in the Northeast Region fell behind the other regions by almost 25\%. In recent years, more specifically the last 3 years, the differential has increased to more than 40\%.

Based on an assessment of the drivers of total factor productivity, such as economies of scale, technology, and output growth, the Northeast Region TFP is the most relevant historical trend to use to for calibration of NSTAR Gas’ I-X under PBR formula.

4.4 NSTAR Gas historical TFP growth

Although it is not necessary for purposes of ratemaking and setting the X factor, LEI also estimated the historical TFP trends for the Company. The growth in NSTAR Gas TFP was

calculated to be 1.10% over the 2003-2017 timeframe. This indicates that the outputs were growing faster than the inputs for NSTAR Gas, historically.

Part of the reason the NSTAR Gas TFP is higher than the industry is due to the higher growth in the number of customers it experienced over the historical study timeframe. NSTAR Gas experienced customer growth over the 2003-2017 period of 1.09% per year on average, compared to 0.73% per year for the U.S. LDC industry. This faster rate of growth in outputs allowed NSTAR Gas to make greater strides in productivity improvements than the industry average.

However, the main driver for the higher TFP for the Company compared to the industry has to do with the negative trend in the quantity of OM&A inputs. Since 2003, NSTAR Gas OM&A input quantity growth has been declining much more rapidly than the rest of the industry. For instance, NSTAR Gas OM&A fell at an average rate of 2.96% per annum compared to 0.52% average growth rate for the industry (at the national, U.S. level). The trend in OM&A input quantities for the Company and the U.S. industry is shown below in Figure 31.

Figure 31. OM&A input quantities index for NSTAR Gas and the U.S. LDC industry

![OM&A input quantities index chart](chart.png)
Capital input quantity growth for the Company has been considerably higher and has increased much faster than the industry (2.48% per year on average compared to 0.76% per year on average for the U.S. LDC industry). The resulting PFP trend for capital is -1.39% for the Company. Much of the steady increase in capital quantity for NSTAR Gas has occurred in recent years. Figure 32 below shows the growth rates for each input and output quantity for NSTAR Gas, as well as the overall PFP and TFP annual growth rates.

<table>
<thead>
<tr>
<th>Year</th>
<th>Customers</th>
<th>Capital</th>
<th>OM&A</th>
<th>Total</th>
<th>Capital</th>
<th>OM&A</th>
<th>TFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A]</td>
<td>[B]</td>
<td>[C]</td>
<td>[D]</td>
<td>[A-B]</td>
<td>[A-C]</td>
<td>[A-D]</td>
<td></td>
</tr>
<tr>
<td>2003-04</td>
<td>1.01%</td>
<td>2.25%</td>
<td>-13.19%</td>
<td>-6.15%</td>
<td>-1.24%</td>
<td>14.20%</td>
<td>7.16%</td>
</tr>
<tr>
<td>2004-05</td>
<td>0.72%</td>
<td>0.76%</td>
<td>4.41%</td>
<td>2.68%</td>
<td>-0.04%</td>
<td>-3.68%</td>
<td>-1.96%</td>
</tr>
<tr>
<td>2005-06</td>
<td>1.03%</td>
<td>-0.77%</td>
<td>-8.87%</td>
<td>-4.96%</td>
<td>1.80%</td>
<td>9.90%</td>
<td>5.99%</td>
</tr>
<tr>
<td>2006-07</td>
<td>0.90%</td>
<td>2.64%</td>
<td>4.40%</td>
<td>3.53%</td>
<td>-1.74%</td>
<td>-3.50%</td>
<td>-2.62%</td>
</tr>
<tr>
<td>2007-08</td>
<td>0.40%</td>
<td>0.62%</td>
<td>-5.61%</td>
<td>-2.43%</td>
<td>-0.22%</td>
<td>6.01%</td>
<td>2.83%</td>
</tr>
<tr>
<td>2008-09</td>
<td>2.39%</td>
<td>2.72%</td>
<td>-9.66%</td>
<td>-2.99%</td>
<td>-0.32%</td>
<td>12.05%</td>
<td>5.38%</td>
</tr>
<tr>
<td>2009-10</td>
<td>0.59%</td>
<td>1.25%</td>
<td>9.85%</td>
<td>5.20%</td>
<td>-0.66%</td>
<td>-9.26%</td>
<td>-4.61%</td>
</tr>
<tr>
<td>2010-11</td>
<td>0.72%</td>
<td>1.69%</td>
<td>3.76%</td>
<td>2.69%</td>
<td>-0.97%</td>
<td>-3.04%</td>
<td>-1.97%</td>
</tr>
<tr>
<td>2011-12</td>
<td>0.94%</td>
<td>3.36%</td>
<td>1.43%</td>
<td>2.43%</td>
<td>-2.42%</td>
<td>-0.49%</td>
<td>-1.49%</td>
</tr>
<tr>
<td>2012-13</td>
<td>1.32%</td>
<td>2.79%</td>
<td>-1.10%</td>
<td>0.95%</td>
<td>-1.47%</td>
<td>2.41%</td>
<td>0.37%</td>
</tr>
<tr>
<td>2013-14</td>
<td>1.42%</td>
<td>2.76%</td>
<td>-3.38%</td>
<td>-0.06%</td>
<td>-1.34%</td>
<td>4.80%</td>
<td>1.48%</td>
</tr>
<tr>
<td>2014-15</td>
<td>1.24%</td>
<td>3.06%</td>
<td>-13.19%</td>
<td>-3.97%</td>
<td>-1.82%</td>
<td>14.44%</td>
<td>5.21%</td>
</tr>
<tr>
<td>2015-16</td>
<td>1.36%</td>
<td>6.83%</td>
<td>-4.46%</td>
<td>2.28%</td>
<td>-5.47%</td>
<td>5.83%</td>
<td>-0.92%</td>
</tr>
<tr>
<td>2016-17</td>
<td>1.19%</td>
<td>4.72%</td>
<td>-5.80%</td>
<td>0.70%</td>
<td>-3.53%</td>
<td>6.99%</td>
<td>0.49%</td>
</tr>
</tbody>
</table>

Average 1.09% 2.48% -2.96% -0.01% -1.39% 4.05% 1.10%
5 X factor results

Since NSTAR Gas is proposing to use the GDP-PI, which is an economy-wide inflation index, as an I factor, the X factor needs to be calibrated to reflect differences between the industry and the entire economy. As such, adjustments need to be made to reflect the TFP differential and an input price differential.

The TFP differential is the difference between the industry TFP growth rate and the TFP growth rate for the overall economy. The broadest measure of TFP growth for the U.S. economy is the BLS multifactor productivity (“MFP”) index for the private business sector. LEI used this BLS MFP index as a proxy measure of TFP trends in the U.S. economy.

The input price differential is the difference between rates of change in input prices for the overall economy and the LDC industry. The U.S. economy input price is calculated as the sum of the MFP growth rate for the year and the BEA GDP-PI growth rate. The industry input price is based on the weighted average of the growth rate of OM&A input price and capital input price, as estimated in LEI’s Industry TFP Study.

Using the national (U.S.) TFP trend of 0.60% and input price differential of -0.28%, these adjustments produce an average X factor -0.79% over the 15-year timeframe, as summarized in Figure 33.

Figure 33. X factor results for the LDC industry (2003-2017)

<table>
<thead>
<tr>
<th>Year</th>
<th>TFP Difference</th>
<th>Input Price Difference</th>
<th>X Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industry (a)</td>
<td>US (b)</td>
<td>(c) = (a) - (b)</td>
</tr>
<tr>
<td>2003</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>0.73%</td>
<td>2.29%</td>
<td>-1.56%</td>
</tr>
<tr>
<td>2005</td>
<td>-1.80%</td>
<td>1.51%</td>
<td>-3.31%</td>
</tr>
<tr>
<td>2006</td>
<td>4.28%</td>
<td>0.46%</td>
<td>3.82%</td>
</tr>
<tr>
<td>2007</td>
<td>-2.32%</td>
<td>0.49%</td>
<td>-2.81%</td>
</tr>
<tr>
<td>2008</td>
<td>-0.94%</td>
<td>-1.12%</td>
<td>0.18%</td>
</tr>
<tr>
<td>2009</td>
<td>-1.60%</td>
<td>0.40%</td>
<td>-2.00%</td>
</tr>
<tr>
<td>2010</td>
<td>0.64%</td>
<td>2.55%</td>
<td>-1.91%</td>
</tr>
<tr>
<td>2011</td>
<td>0.55%</td>
<td>-0.27%</td>
<td>0.82%</td>
</tr>
<tr>
<td>2012</td>
<td>1.34%</td>
<td>0.57%</td>
<td>0.77%</td>
</tr>
<tr>
<td>2013</td>
<td>0.39%</td>
<td>0.36%</td>
<td>0.03%</td>
</tr>
<tr>
<td>2014</td>
<td>-0.90%</td>
<td>0.42%</td>
<td>-1.32%</td>
</tr>
<tr>
<td>2015</td>
<td>2.56%</td>
<td>0.86%</td>
<td>1.69%</td>
</tr>
<tr>
<td>2016</td>
<td>-0.26%</td>
<td>-0.55%</td>
<td>0.28%</td>
</tr>
<tr>
<td>2017</td>
<td>-1.45%</td>
<td>0.38%</td>
<td>-1.83%</td>
</tr>
<tr>
<td>Average (2003-2017)</td>
<td>0.09%</td>
<td>0.60%</td>
<td>-0.51%</td>
</tr>
</tbody>
</table>

Using the recommended TFP trend for the Northeast Region, the resulting X factor is -1.30%, as shown in Figure 34 below.

Figure 34. X factor results for the Northeast LDCs

<table>
<thead>
<tr>
<th>Year</th>
<th>TFP Difference</th>
<th>Input Price Difference</th>
<th>X Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Industry (a)</td>
<td>US (b)</td>
<td>(c) = (a) - (b)</td>
</tr>
<tr>
<td>2003</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2004</td>
<td>1.43%</td>
<td>2.29%</td>
<td>-0.87%</td>
</tr>
<tr>
<td>2005</td>
<td>-1.01%</td>
<td>1.51%</td>
<td>-2.52%</td>
</tr>
<tr>
<td>2006</td>
<td>4.57%</td>
<td>0.46%</td>
<td>4.11%</td>
</tr>
<tr>
<td>2007</td>
<td>-2.82%</td>
<td>0.49%</td>
<td>-3.31%</td>
</tr>
<tr>
<td>2008</td>
<td>-1.89%</td>
<td>-1.12%</td>
<td>-0.77%</td>
</tr>
<tr>
<td>2009</td>
<td>-2.03%</td>
<td>0.40%</td>
<td>-2.43%</td>
</tr>
<tr>
<td>2010</td>
<td>0.40%</td>
<td>2.55%</td>
<td>-2.14%</td>
</tr>
<tr>
<td>2011</td>
<td>-0.33%</td>
<td>-0.27%</td>
<td>-0.06%</td>
</tr>
<tr>
<td>2012</td>
<td>-2.01%</td>
<td>0.57%</td>
<td>-2.58%</td>
</tr>
<tr>
<td>2013</td>
<td>1.71%</td>
<td>0.36%</td>
<td>1.35%</td>
</tr>
<tr>
<td>2014</td>
<td>-3.36%</td>
<td>0.42%</td>
<td>-3.78%</td>
</tr>
<tr>
<td>2015</td>
<td>1.46%</td>
<td>0.86%</td>
<td>0.60%</td>
</tr>
<tr>
<td>2016</td>
<td>0.89%</td>
<td>-0.55%</td>
<td>1.43%</td>
</tr>
<tr>
<td>2017</td>
<td>-2.42%</td>
<td>0.38%</td>
<td>-2.80%</td>
</tr>
<tr>
<td>Average (2003-2017)</td>
<td>-0.39%</td>
<td>0.60%</td>
<td>-0.98%</td>
</tr>
</tbody>
</table>
6 Appendix: Alternative Output Metric

In addition to the TFP analysis described above using the total number of customers as the measure of output, LEI conducted a sensitivity test using gas sales as an output metric for the national (U.S.) Study Group. Using annual gas sales volume as an output measure generates a more negative TFP trend and a more negative X factor, compared to the Main Case. As shown in the figure below, year-on-year trends in annual gas sales volume were more volatile, and on average, lower than the average growth in the number of customers served. The average growth rate in gas sales volumes was affected primarily by the negative annual changes in volumes in the early and mid-2000s, as shown in Figure 35. The associated X factor under this sensitivity is also more negative at -1.10% (as compared to -0.79% for the national sample). LEI would expect broadly similar directional impacts for the Northeast Region LDC Industry TFP.

As discussed in Section 3.2, total customers served is a preferred metric for assessing productivity trends in the LDC industry. Furthermore, for purposes of setting the X factor under a price or revenue cap, gas sales as a measure of output are less appropriate because of the typical regulatory accounting treatment of weather impacts on gas sales (there are usually weather variance accounts that true-up revenues for weather factors) and the presence of decoupling arrangements. Therefore, LEI recommends that the Department focus on the results of the Main Case for informing its regulatory decision-making.
Figure 36. Annual TFP growth rates using gas sales as an output measure for the U.S. LDC industry

<table>
<thead>
<tr>
<th>Year</th>
<th>Output</th>
<th>OM&A</th>
<th>Capital</th>
<th>Total</th>
<th>TFP Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Customers</td>
<td>-0.30%</td>
<td>0.97%</td>
<td>0.34%</td>
<td>-2.6%</td>
</tr>
<tr>
<td>2003</td>
<td>1.08%</td>
<td>6.07%</td>
<td>0.12%</td>
<td>3.06%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>2004</td>
<td>1.26%</td>
<td>6.78%</td>
<td>0.12%</td>
<td>3.33%</td>
<td>1.9%</td>
</tr>
<tr>
<td>2005</td>
<td>0.79%</td>
<td>2.32%</td>
<td>0.34%</td>
<td>1.30%</td>
<td>0.6%</td>
</tr>
<tr>
<td>2006</td>
<td>1.00%</td>
<td>3.11%</td>
<td>0.25%</td>
<td>1.64%</td>
<td>-6.1%</td>
</tr>
<tr>
<td>2007</td>
<td>0.03%</td>
<td>-1.40%</td>
<td>0.64%</td>
<td>-0.36%</td>
<td>3.1%</td>
</tr>
<tr>
<td>2008</td>
<td>0.28%</td>
<td>-0.41%</td>
<td>0.63%</td>
<td>0.11%</td>
<td>0.7%</td>
</tr>
<tr>
<td>2009</td>
<td>0.67%</td>
<td>-1.69%</td>
<td>0.44%</td>
<td>-0.60%</td>
<td>0.3%</td>
</tr>
<tr>
<td>2007</td>
<td>0.74%</td>
<td>0.12%</td>
<td>-0.23%</td>
<td>-0.06%</td>
<td>7.1%</td>
</tr>
<tr>
<td>2011</td>
<td>0.33%</td>
<td>0.84%</td>
<td>1.63%</td>
<td>1.24%</td>
<td>2.4%</td>
</tr>
<tr>
<td>2012</td>
<td>0.35%</td>
<td>-0.41%</td>
<td>0.63%</td>
<td>0.11%</td>
<td>0.7%</td>
</tr>
<tr>
<td>2013</td>
<td>0.67%</td>
<td>0.35%</td>
<td>1.35%</td>
<td>0.87%</td>
<td>-4.0%</td>
</tr>
<tr>
<td>2014</td>
<td>0.68%</td>
<td>1.71%</td>
<td>2.52%</td>
<td>2.14%</td>
<td>-3.3%</td>
</tr>
</tbody>
</table>

Average (2003-2017) 0.73% 0.52% 0.76% 0.65% -0.22%

Figure 37. X factor results for the U.S. LDC industry using gas sales as an output measure

<table>
<thead>
<tr>
<th>Period</th>
<th>Industry</th>
<th>US</th>
<th>Difference</th>
<th>US</th>
<th>Industry</th>
<th>Difference</th>
<th>X Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c) = (a) - (b)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f) = (d) - (e)</td>
<td>(x) = (c) + (f)</td>
</tr>
<tr>
<td>2003</td>
<td>-2.55%</td>
<td>2.61%</td>
<td>-5.16%</td>
<td>0.52%</td>
<td>3.50%</td>
<td>-3.11%</td>
<td>-3.11%</td>
</tr>
<tr>
<td>2004</td>
<td>-0.06%</td>
<td>1.53%</td>
<td>-1.59%</td>
<td>4.58%</td>
<td>6.85%</td>
<td>-2.27%</td>
<td>-2.27%</td>
</tr>
<tr>
<td>2005</td>
<td>-0.63%</td>
<td>-0.26%</td>
<td>-0.98%</td>
<td>3.36%</td>
<td>8.52%</td>
<td>7.36%</td>
<td>7.36%</td>
</tr>
<tr>
<td>2006</td>
<td>1.89%</td>
<td>0.39%</td>
<td>1.50%</td>
<td>3.04%</td>
<td>2.48%</td>
<td>0.56%</td>
<td>0.56%</td>
</tr>
<tr>
<td>2007</td>
<td>0.58%</td>
<td>1.19%</td>
<td>0.77%</td>
<td>0.70%</td>
<td>2.09%</td>
<td>-1.39%</td>
<td>-1.39%</td>
</tr>
<tr>
<td>2008</td>
<td>-6.08%</td>
<td>0.26%</td>
<td>-5.82%</td>
<td>0.52%</td>
<td>4.70%</td>
<td>-0.18%</td>
<td>-0.18%</td>
</tr>
<tr>
<td>2009</td>
<td>3.14%</td>
<td>3.25%</td>
<td>-0.11%</td>
<td>1.12%</td>
<td>3.03%</td>
<td>-0.44%</td>
<td>-0.44%</td>
</tr>
<tr>
<td>2010</td>
<td>0.65%</td>
<td>0.07%</td>
<td>0.58%</td>
<td>2.13%</td>
<td>2.82%</td>
<td>-0.69%</td>
<td>-0.69%</td>
</tr>
<tr>
<td>2011</td>
<td>0.25%</td>
<td>0.69%</td>
<td>0.44%</td>
<td>2.60%</td>
<td>3.03%</td>
<td>-0.44%</td>
<td>-0.44%</td>
</tr>
<tr>
<td>2012</td>
<td>7.13%</td>
<td>0.41%</td>
<td>6.73%</td>
<td>2.16%</td>
<td>1.99%</td>
<td>0.18%</td>
<td>0.18%</td>
</tr>
<tr>
<td>2013</td>
<td>2.43%</td>
<td>0.87%</td>
<td>1.56%</td>
<td>2.73%</td>
<td>1.80%</td>
<td>0.92%</td>
<td>0.92%</td>
</tr>
<tr>
<td>2014</td>
<td>-2.53%</td>
<td>0.93%</td>
<td>-3.46%</td>
<td>1.96%</td>
<td>2.41%</td>
<td>-0.45%</td>
<td>-0.45%</td>
</tr>
<tr>
<td>2015</td>
<td>-4.00%</td>
<td>0.06%</td>
<td>-3.54%</td>
<td>0.62%</td>
<td>0.79%</td>
<td>-0.17%</td>
<td>-0.17%</td>
</tr>
<tr>
<td>2016</td>
<td>-3.27%</td>
<td>0.76%</td>
<td>-4.02%</td>
<td>2.66%</td>
<td>1.23%</td>
<td>1.42%</td>
<td>1.42%</td>
</tr>
</tbody>
</table>

Average -0.22% 0.71% -0.93% 2.62% 2.79% -0.17% -1.10%
BENCHMARKING THE TOTAL COST OF NSTAR GAS COMPANY

Prepared for

NSTAR Gas Company

By

London Economics International LLC
717 Atlantic Avenue, Suite 1A
Boston, MA 02111

November 8, 2019
DISCLAIMER

London Economics International LLC (“LEI”) was retained by NSTAR Gas Company (“NSTAR Gas” or “the Company”) to prepare a total cost benchmarking study (“Total Cost Benchmarking Study”). LEI has made the qualifications noted below with respect to the information contained in this Study and the circumstances under which the report was prepared.

While LEI has taken all reasonable care to ensure that its analysis is complete, gas markets are highly dynamic, and thus certain recent developments may or may not be included in LEI’s analysis. It should note that:

- LEI’s analysis is not intended to be a complete and exhaustive benchmarking analysis of the gas local distribution utility (“LDC”) markets. The provision of an analysis by LEI does not obviate the need for potential investors to make further appropriate inquiries as to the accuracy of the information included therein, and to undertake their own analysis and due diligence.

- No results provided or opinions given in LEI’s analysis should be taken as a promise or guarantee as to the occurrence of any future events.

- There can be substantial variation between assumptions and market outcomes analyzed by various consulting organizations specializing in competitive gas markets and investments in such markets. Neither LEI nor its employees make any representation or warranty as to the consistency of LEI’s analysis with that of other parties.

The contents of LEI’s analysis do not constitute investment advice. LEI, its officers, employees, and affiliates make no representations or recommendations to any party other than NSTAR Gas. LEI expressly disclaims any liability for any loss or damage arising or suffered by any third party as a result of that party’s, or any other party’s, direct or indirect reliance upon LEI’s analysis and this report.
Table of Contents

1 EXECUTIVE SUMMARY ..3
 1.1 LEI’S APPROACH ...3
 1.2 SUMMARY OF RESULTS ..4
 1.3 STRUCTURE OF THIS REPORT ..5

2 THE PURPOSE OF TOTAL COST BENCHMARKING ...6

3 BENCHMARKING USING ECONOMETRICS ...8
 3.1 ESTABLISHING THE APPROPRIATE ECONOMIC MODEL ..9
 3.1.1 Functional form of the economic model ..9
 3.1.2 Definitions of variables used in the translog ...9
 3.2 DATASET USED ...12
 3.3 THE ECONOMETRIC PROCESS ..14

4 BENCHMARKING RESULTS AND IMPLICATIONS ..17
 4.1 KEY FINDINGS ...17
 4.2 IMPLICATIONS OF THE RANKING RESULTS ..18

5 APPENDIX A: DETAILS OF THE BENCHMARKING APPROACH ..20
 5.1 ECONOMIC FOUNDATION OF BENCHMARKING ANALYSIS: TRANSLOG COST FUNCTION20
 5.2 THE ECONOMETRIC PROCESS ..21
 5.3 ECONOMETRIC RESULTS ..21
 5.3.1 Overall explanatory power of the model is significant ...21
 5.3.2 Linear fit of the model is good ...22
 5.3.3 Coefficient estimates and their individual statistical significance ...22
 5.3.4 Alternative econometric approaches considered ..25

6 APPENDIX B: FULL LIST OF EFFICIENCY RANKINGS FOR 82 LDCS IN THE U.S. ...27

7 APPENDIX C: FULL LIST OF EFFICIENCY RANKINGS FOR 29 LDCS IN THE NORTHEAST REGION29

8 APPENDIX D: LEI TEAM’S QUALIFICATION FOR THE TOTAL COST BENCHMARKING STUDY30

Table of Figures

FIGURE 1. NSTAR Gas’ ranking among 82 U.S. LDCs in the benchmarking study (2014-2017)5
FIGURE 2. NSTAR Gas’ ranking among 29 Northeast LDCs in the benchmarking study (2014-2017)5
FIGURE 3. ILLUSTRATION OF THE “CONVERGENCE EFFECT” ..7
FIGURE 4. SOURCES OF DATA USED IN THE LEI TOTAL COST BENCHMARKING STUDY12
FIGURE 5. STATES COVERED IN LEI’S TOTAL COST BENCHMARKING STUDY AND INDUSTRY TFP STUDY ...13
FIGURE 6. GAS UTILITIES INCLUDED IN LEI’S TOTAL COST BENCHMARKING STUDY13
FIGURE 7. ILLUSTRATIVE AND SIMPLIFIED EXAMPLE OF THE IMPACT OF NUMBER OF CUSTOMERS ON THE TOTAL COST ...15
FIGURE 8. RELATIVE EFFICIENCY OF 82 U.S. LDCS ...18
FIGURE 9. OVERALL EXPLANATORY POWER OF THE MODEL ..22
FIGURE 10. COEFFICIENT ESTIMATES FOR TOTAL COST FUNCTION AND STATISTICAL SIGNIFICANCE25
FIGURE 11. LEI’S RANKING OF 82 U.S. LDCS (AVERAGE OF RANKING 2014-2017)27
FIGURE 12. LEI’S RANKING OF 29 LDCS IN THE NORTHEAST REGION (AVERAGE RANKING OF 2014-2017)29
Acronyms

BEA Bureau of Economic Analysis
BLS Bureau of Labor Statistics
Capex Capital expenditure
COLS Corrected ordinary least squares
EIA Electricity Information Administration
FE Fixed effects
FERC Federal Energy Regulatory Commission
GDP-PI Gross Domestic Product Price Index
I-X Inflation – (minus) Productivity factor
LDC Local distribution company
LEI London Economics International LLC
Mcf Million cubic feet
MW Midwest region of the U.S. (Census)
NE Northeast region of the U.S. (Census)
OM&A Operations, maintenance, and administrative
PBR Performance-based regulation
PHMSA Pipeline and Hazardous Materials Safety Administration
RE Random effects
SFA Stochastic frontier analysis
SO South region of the U.S. (Census)
TC Total cost
TFP Total factor productivity
TLC Transcendental logarithmic
WACC Weighted average cost of capital
WE West region of the U.S. (Census)
X factor Productivity factor
1 Executive Summary

London Economics International ("LEI") was engaged by NSTAR Gas Company ("NSTAR Gas" or the "Company") to perform a total cost ("TC") benchmarking study to evaluate the company’s efficiency compared to other local gas distribution companies ("LDCs") in the United States.

Total cost benchmarking evaluates the performance of an individual firm, by comparing it cross-sectionally to other firms in the same industry at a given snapshot in time. The econometric technique that LEI employed allows for estimation of a hypothetical “average firm” against which all LDCs are compared. The econometrics also allows for the ranking of LDCs by their relative efficiency, where efficiency is defined as the extent to which costs are lower than the expected average level.

LEI’s Total Cost Benchmarking Study aims to help the regulator calibrate the “I-X” mechanism as a supplement to the total factor productivity ("TFP") study ("LEI’s Industry TFP Study"), which measures the historical productivity growth rate of the U.S. gas industry.1 LEI’s Industry TFP Study determines the productivity or the X factor that should be applied to NSTAR Gas for its “I-X” rate escalation mechanism, while a benchmarking study, such as the one described in this report, supports other adjustments to the rate escalation mechanism. More specifically, a benchmarking study assesses whether a firm has room for improving its efficiency compared to other LDCs and if a “stretch factor” (i.e., an adder to the X factor) is needed to incentivize such improvement.

1.1 LEI’s approach

To evaluate the Company’s efficiency compared to other LDCs in the U.S., LEI conducted an econometrics-based total cost benchmarking analysis. The econometric analysis involves applying statistical analysis to a defined economic model; in this case, a total cost model. The economic model and the econometric analysis are discussed in more detail in Section 3. Econometric benchmarking is a well-established and widely used approach to total cost benchmarking.

1 Please refer to Empirical Analysis of Total Factor Productivity Trends in The U.S. Gas Local Distribution Industry, prepared by LEI for NSTAR Gas Company (draft July 15, 2019).
Econometric analysis generates an estimate of the average relationship between total cost and a number of other explanatory factors that illuminate how each factor contributes to the total costs for LDCs. The fitted econometric model is then used to predict the total cost of each individual firm. If a company’s actual total cost is lower than that predicted by the fitted econometric model, it is deemed to be relatively efficient. If its actual total cost is higher than predicted, it is deemed to be relatively less efficient. In LEI’s study, the econometric process controls for the size of the company’s operations (measured as number of customers served, for example), and other factors (such as the price of key inputs, customer profile, and the age of a gas system and other legacy factors, that could impact costs but may be outside the management control of the firm).

The size and sign of the difference between the predicted total cost and the actual total cost for a firm allow not only an assessment of the firm but also enables ranking of all the firms in the dataset. The companies with the lowest (i.e., most negative) percentage difference from the predicted cost are the most efficient; conversely, the companies with the highest (most positive) percentage difference from the predicted cost are the least efficient.

1.2 Summary of Results

LEI’s Total Cost Benchmarking Study is based on the same dataset used in LEI’s Industry TFP Study, which includes 83 LDCs, with certain additional factors and metrics. One company was excluded from the benchmarking dataset due to incomplete pipeline miles data, an important driver of costs. Therefore, a total of 82 U.S. LDCs are analyzed in LEI’s Total Cost Benchmarking Study. LEI’s econometric analysis indicates that NSTAR Gas’ actual costs for the years 2014 through 2017 were, on average lower than predicted; therefore, the Company was more efficient than the average LDC.

The ranking exercise showed that the Company was among the more efficient performers in the U.S., ranking top 40% among the 82 LDCs for the four-year period overall (see Figure 1). In the Northeast Region (defined by U.S. Bureau of Labor Statistics (“BLS”) as consisting of the six New England states, Pennsylvania, New York, and New Jersey), NSTAR Gas consistently ranked as one of the top 10 most efficient LDCs during 2014-2017 (see Figure 2).

2 Avista Corporation was included in LEI’s the TFP study but was taken out from the benchmarking analysis because of incomplete data for pipeline miles reported by PHMSA.
Figure 1. NSTAR Gas’ ranking among 82 U.S. LDCs in the benchmarking study (2014-2017)

<table>
<thead>
<tr>
<th>Year</th>
<th>Ranking</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>2015</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>2016</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>2017</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>Average</td>
<td>31*</td>
<td>2</td>
</tr>
</tbody>
</table>

*Note: The **average** ranking reflects the ranking of NSTAR Gas’ average ranking over the entire timeframe (2014-2017) among the 82 U.S. LDCs. It is not the simple average of the Company’s ranking in each year.

Figure 2. NSTAR Gas’ ranking among 29 Northeast LDCs in the benchmarking study (2014-2017)

<table>
<thead>
<tr>
<th>Year</th>
<th>Ranking</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>2015</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2016</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>2017</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Average</td>
<td>6*</td>
<td>1</td>
</tr>
</tbody>
</table>

*Note: The **Average** ranking reflects the ranking of NSTAR Gas’ average ranking of the four years among the 29 NE companies. It is not the simple average of the Company’s ranking in each year.

1.3 Structure of this report

This report is structured as follows: Section 2 explains what an econometrics-based benchmarking study is and how it is typically used in PBR regulatory proceedings. Section 3 provides a high-level overview of the technical methodology adopted in LEI’s analysis. Section 4 discusses the outcomes of the study and the Company’s relative efficiency rankings. Appendix A in Section 5 provides the details of the economic model and econometric approach used for the benchmarking. Section 6 and Section 7 provide the full set of rankings for the 82 U.S. LDCs and 29 Northeast LDCs, respectively. Section 8 provides highlights of LEI’s qualifications for performing utility benchmarking studies.
2 The purpose of total cost benchmarking

The purpose of benchmarking is to compare the performance of an individual firm to the performance of other individual firms. Total cost benchmarking studies provide empirical evidence that can be used to inform the regulator’s judgment on an appropriate expectation for further efficiency improvement for a regulated company. By identifying the relative efficiency of a regulated firm, a total cost benchmarking study can help the regulator calibrate the I-X mechanism.

Generally, a company that is more efficient relative to its peers has less room for further cost savings; conversely, a company that is less efficient than its peers has more room for improvement. Regulators may set “stretch factors” (above and beyond the industry-average X factor target) to motivate a relatively inefficient regulated firm to catch up with its peers. However, the effect of the stretch factor will not last forever. As a firm gets closer to the best-practice efficiency level of the industry, its rate of productivity growth will slow down as it becomes exceedingly harder to find incremental cost efficiencies and outperform the industry average growth in TFP. Eventually, firms that have exhausted any “catch-up” opportunities will be constrained by the rate of industry average TFP growth. This phenomenon has been named the “convergence effect.” As illustrated in Figure 3, the efficiency growth rate of the relatively less efficient Company B slows down over time as it catches up with the better performer, Company A, and approaches the industry average.

If the results of a total cost benchmarking study suggest that the regulated firm is already efficient, this provides evidence that additional stretch factors are unnecessary and that the proposed X factor, based on industry average TFP trends, already reflects expectations for future efficiency gains. Therefore, additional incentives (in the form of stretch factor) are not necessary for setting the PBR formula. The lack of additional stretch factors does not mean that the regulator is lowering the bar for the efficient firm: the presence of an X factor that has been calibrated to industry TFP trends requires that the regulated firm must still keep its rate of productivity growth in line with the industry average.

Figure 3. Illustration of the “convergence effect”

[Diagram showing the efficiency level over time for Company A and Company B, with a comparison to the industry average.]

- **Company A**: Efficiency growth rate
- **Company B**: Efficiency growth rate
- **Industry Average**: Efficiency growth rate
3 Benchmarking using econometrics

Econometrics-based benchmarking is a well-established approach for comparing firms based on their total costs and outputs. It has been presented to regulators in many rate filing submissions in jurisdictions such as California, Georgia, Illinois, Kentucky, Maine, Michigan, and Oklahoma, to name a few, and has been accepted for use by regulators in Colorado, Ontario, Australia, New Zealand, and the UK.

An econometric process estimates the statistical relationship between a dependent variable and one or more independent variables. A dependent variable “depends” on the value of another variable. For example, the level of total cost a company incurs will depend on, among other things, the total number of customers it serves. A larger company serving more customers will have higher total costs than a small company with few customers. Therefore, the total cost is the dependent variable. An independent variable explains the level of the dependent variable. The total cost of an LDC can be explained by the number of customers it serves, the price of labor and capital, and potentially other independent variables. These independent variables are sometimes referred to as drivers of total costs, business conditions, and other factors that affect total costs. Controlling for these independent variables is important for arriving at a measure of relative efficiency that can be interpreted as the result of business decisions and activities which are under the control of a firm’s management.

The econometric process allows one to measure how much and in what direction each of these factors impacts total cost, on average, for a set of firms operating in the same industry. The econometrics-based approach requires a large set of standardized data to provide reliable results, which is why, if such data are not available, other benchmarking approaches are used. However, in the case of NSTAR Gas, the foundations of the necessary large dataset are available from public sources such as the United States Energy Information Administration (“EIA”), Federal Energy Regulatory Commission (“FERC”), Pipeline and Hazardous Materials Safety Administration (“PHMSA”), U.S. Bureau of Labor Statistics (“BLS”), and state commissions (see Figure 4 in Section 3.2 for a full list of data sources). However, though this foundational data is publicly available, it requires auditing and cross-checking with state regulatory filings and individual company sources, as some of the data may not be reported consistently. LEI acquired an initial dataset for U.S. LDCs from a third-party data vendor and then audited, reviewed, and supplemented the data with research. LEI’s Total Cost Benchmarking Study relies on data

4 When such data is not available, an index-based alternative is sometimes used. The index-based approach involves calculating the ratios of performance variables for the target utility and a selected set of peer companies. The index-based approach can be adjusted to control for a limited number of drivers, and it can be appropriate in some circumstances. However, it also requires selection of a peer group of comparable LDCs, which in practice usually means a smaller cross-sectional set of companies as compared to an econometrics benchmarking study.
points for the 83 LDCs used in the LEI’s Industry TFP Study (see Section 2.6 of LEI’s Industry TFP Study for a more detailed description of the industry data).

3.1 Establishing the appropriate economic model

Econometrics involves the application of statistical techniques to an economic model. So, before performing econometrics, LEI defined a suitable economic model which describes the total cost of an LDC.

3.1.1 Functional form of the economic model

LEI used the transcendental logarithmic (“TLC” or “translog”) cost function. The translog cost function provides a flexible, functional form which does not require a priori assumptions about scale economies or the extent of input substitution. The translog is a tried-and-tested tool for empirical research of costs in many sectors of the economy, with examples as diverse as oil and gas production, banking, airports, school systems, and utilities.

The translog cost function posits that the dependent variable (total cost) depends on the level of output of a firm, the price of the firm’s inputs, and possibly other factors that can impact the total cost. Appendix A provides additional technical details of the translog cost function used in this study.

3.1.2 Definitions of variables used in the translog

The dependent variable in LEI’s benchmarking model is the total cost of the LDC. This consists of operations, maintenance, and administration (“OM&A”) costs plus capital costs (defined as capital quantity multiplied by the implied rental price of capital, which yields user cost of capital). The total cost data was developed based on LEI’s Industry TFP dataset.

5 The translog function was first developed by Christiansen, Laurits R., Jorgenson, Dale W., and Lau, Lawrence W. in the article “Transcendental logarithmic production frontiers.” Review of Economics and Statistics. 55 (1) February 1973. It has stood the test of time and is still in widespread use.

The independent variables in the TLC, which represent prices and output, include the following:7

1. **OM&A price (referred to as “W1” in Appendix A):** defined as the weighted average of labor price and non-labor price. The labor price is represented by the compensation index of the U.S. gas utilities sector reported by the U.S. Bureau of Labor Statistics (“BLS”). The non-labor price is represented by the Gross Domestic Product Price Index (“GDP-PI”) reported by the U.S. Bureau of Economic Analysis (“BEA”). LEI allocated 54% to labor cost and 46% to the non-labor cost, based on the total cost of labor vs. non-labor material costs share, as explained in Section 3.2.1 of LEI’s Industry TFP Report. The OM&A price is in the form of an index;

2. **Capital price (”W2” in Appendix A):** represents the implied rental price of capital as calculated in LEI’s Industry TFP study (see Section 3.3.3). The price is in the form of an index; and

3. **Total number of customers (”Y1” in Appendix A):** the total number of customers who had their gas delivered using the LDC’s system from the utility. This controls the size of the firm and also serves as a proxy for the output (or level of service) of an LDC. LEI expects that the more customers an LDC serve, the higher its total costs will be. This expectation will be verified by the econometric process.

It is standard practice to ensure that only differences in costs at the firm level (i.e., costs that are under the control of management) be attributed to the measure of greater or less efficiency. Therefore, other factors that impact the total costs need to be accounted for in the economic model. LEI hypothesized that a number of other independent variables could potentially impact the total costs for LDCs. Typically, variables such as type of pipeline material (proxied by percentage of pipe which is not cast iron or bare steel); age of the pipeline system; characterizations of the customer base; and exogenous changes over time (if the study covers a long period of time).8

Therefore, the other independent variables LEI included in the translog cost model were:

1. **Percentage of the net increase of miles of mains in the last ten years (referred to as “Z1” in Appendix A):** measures the relative age of the system. A new system is likely to have lower OM&A costs, holding all else constant, but also higher capital costs.

7 All price and cost data are in real 1998 dollars.

8 As discussed in Section 3.1.2, the data LEI used for the econometric benchmarking covers four years (2014-2017). For this short time series, LEI did not deem it necessary to control for exogenous changes over time.
Therefore, on a total cost basis, it is not possible to predict the direction of the impact of this factor on the total cost before estimation with econometrics;

2. **Percentage of mains (measured initially in terms of miles) not made of cast iron or bare steel (“Z2” in Appendix A):** measures the material composition of the distribution system. A higher percentage of bare steel and cast iron will likely be associated with higher OM&A costs. However, mains not made from cast iron or bare steel tend to be newer and therefore result in higher capital costs. Consequently, it is not possible to predict the direction of the impact of this factor on total costs before econometric estimation;

3. **Percentage of residential customers (“Z3” in Appendix A):** captures the customer profile (residential, commercial, or industrial) of each LDC. LEI expects that total costs will be higher with a higher share of residential customers. Residential customers of electric or gas service are typically more expensive to serve compared to commercial or industrial customers, because their demand varies more dramatically across the year (in other words, their “load factors” are low) so there is less gas consumption over which to spread the cost of infrastructure; and because each residential customer typically has a much lower demand for gas than a typical commercial or industrial customer, which also results in less gas consumption over which to spread the cost of infrastructure;

4. **Population density (Regional “PPL_Dens” in Appendix A):** defined as the number of people per square mile for each BEA U.S. region (Northeast, Midwest, South, and West). An LDC’s total cost is likely to be impacted by the population density of its geographical location. However, the direction of such an impact cannot be predicted in advance because a company might need less pipeline per customer for delivering gas in a highly population-dense area, yet it might be faced with greater technical and regulatory challenges to building new infrastructure in such an area, which will increase the costs of doing business. Unlike all the other independent variables, this factor varies only by BEA region (Northeast, Midwest, South, and West) not by company; and

5. **Customer density (“Cus_Dens” in Appendix A):** calculated as the number of customers an LDC serves divided by the total miles of mains that the LDC owns. Customer density is another factor that affects an LDC’s total costs but is beyond the control of the company’s management. The directional impact of customer density on the total cost cannot be predicted. Utilities serving areas with high customer density may require more investment in services. On the other hand, there may be synergies in operating costs if high customer density reflects the existence of many multi-customer buildings.

3.2 Dataset used

LEI used a combination of cross-section and time-series data (referred to as “panel data”) that contains a time series of 4 years, from 2014-2017, and a cross-section of 82 LDCs. As noted previously, the sample of LDCs included is the same as what is included in LEI’s Industry TFP Study (with one exception)\(^{10}\) and reflects the most complete dataset of firms for which the time series was long enough to develop a robust total cost of capital. Figure 4 below summarizes the data sources.

Figure 4. Sources of data used in the LEI Total Cost Benchmarking Study

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Costs</td>
<td>FERC Form 2, LDC State Filing</td>
</tr>
<tr>
<td>Total costs = OM&A costs + Capital costs</td>
<td></td>
</tr>
<tr>
<td>Where OM&A costs and Capital costs are calculated in LEI’s Industry TFP study</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Independent variable</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total End User Natural Gas Customers</td>
<td></td>
</tr>
<tr>
<td>- Including Residential, Commercial, Industrial, Electric Power, Vehicle Fuel, and other natural gas customers</td>
<td></td>
</tr>
<tr>
<td>- Including both Delivery only (LDC owns the gas) and Bundled customers (LDC does not own the gas)</td>
<td></td>
</tr>
<tr>
<td>Share of Residential Customers</td>
<td></td>
</tr>
<tr>
<td>- Dividing the number of residential customers by total customers served</td>
<td></td>
</tr>
<tr>
<td>Customers Served</td>
<td></td>
</tr>
<tr>
<td>- Including Residential, Commercial, Industrial, Electric Power, Vehicle Fuel, and other natural gas customers</td>
<td></td>
</tr>
<tr>
<td>- Including both Delivery only (LDC owns the gas) and Bundled customers (LDC does not own the gas)</td>
<td></td>
</tr>
<tr>
<td>Share of Residential Customers</td>
<td></td>
</tr>
<tr>
<td>- Dividing the number of residential customers by total customers served</td>
<td></td>
</tr>
<tr>
<td>OM&A Price</td>
<td></td>
</tr>
<tr>
<td>Labor Price: Compensation Rate and Employer Cost Index for Compensation by region for the Utilities sector</td>
<td></td>
</tr>
<tr>
<td>Non-labor Price: GDP-PI</td>
<td></td>
</tr>
<tr>
<td>Capital Price</td>
<td></td>
</tr>
<tr>
<td>Investment tax credit</td>
<td></td>
</tr>
<tr>
<td>Corporate profits tax rate</td>
<td></td>
</tr>
<tr>
<td>Asset tax lifetime</td>
<td></td>
</tr>
<tr>
<td>Average service life</td>
<td></td>
</tr>
<tr>
<td>Rate of return for discounting depreciation deductions</td>
<td></td>
</tr>
<tr>
<td>Inflation rate - GDPPI</td>
<td></td>
</tr>
<tr>
<td>Inflation rate - CPI</td>
<td></td>
</tr>
<tr>
<td>Average bond yield - US Treasury Yield Curve (30-Year)</td>
<td></td>
</tr>
<tr>
<td>Moody’s AAA average bond yields for US corporates</td>
<td></td>
</tr>
<tr>
<td>PPI for Commodity – Construction Materials</td>
<td></td>
</tr>
<tr>
<td>Length and Material Composition of Mains</td>
<td></td>
</tr>
<tr>
<td>Length of Mains by material</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>Population density</td>
<td></td>
</tr>
<tr>
<td>Calculated by total population in each BLS-defined region by the area of the corresponding region.</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td></td>
</tr>
</tbody>
</table>

* Calculation of capital price, i.e., the implied rental price for capital, is explained in LEI’s Industry TFP Study, Section 3.2.3.

\(^{10}\) One LDC was removed from the LEI Total Cost Benchmarking Study as compared to LEI’s Industry TFP Study: Avista Corporation did not have complete data for miles of mains, so it could not be examined in the benchmarking study.
These 82 LDCs are located in 31 states across the U.S., covering all four census regions (Northeast, Midwest, South, West) defined by BLS\(^\text{11}\) (see Figure 5 and 6).

Figure 5. States covered in LEI’s Total Cost Benchmarking Study and Industry TFP Study

[Map image showing states and LDCs covered in studies]

Figure 6. Gas utilities included in LEI’s Total Cost Benchmarking Study

<table>
<thead>
<tr>
<th>Midwest</th>
<th>Northeast</th>
<th>South</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citizens Gas Fuel Company</td>
<td>Bay State Gas Company</td>
<td>Atlanta Gas Light Company</td>
<td>Cascade Natural Gas Corporation</td>
</tr>
<tr>
<td>Columbia Gas of Ohio, Inc.</td>
<td>Berkshire Gas Company</td>
<td>Atnos Energy Company</td>
<td>Cheyenne Light, Fuel and Power Company</td>
</tr>
<tr>
<td>Eastern Natural Gas Company</td>
<td>Central Hudson Gas & Electric Corporation</td>
<td>Bluefield Gas Company</td>
<td>Qwestar Gas Company</td>
</tr>
<tr>
<td>Illinois Gas Company</td>
<td>Colonial Gas Company</td>
<td>Columbia Gas of Kentucky, Incorporated</td>
<td>San Diego Gas & Electric Company</td>
</tr>
<tr>
<td>Kansas Gas Service Company, Inc.</td>
<td>Connecticut Natural Gas Corporation</td>
<td>Columbia Gas of Virginia, Incorporated</td>
<td>Southern California Gas Company</td>
</tr>
<tr>
<td>Midwest Natural Gas, Inc.</td>
<td>Fillmore Gas Company, Inc.</td>
<td>Illinois Gas Company</td>
<td>Louisville Gas and Electric Company</td>
</tr>
<tr>
<td>North Shore Gas Company</td>
<td>KeySpan Gas East Corporation</td>
<td>MountainEnergy Gas Company</td>
<td>Peoples Gas System</td>
</tr>
<tr>
<td>Ohio Gas Company</td>
<td>New York State Electric & Gas Corporation</td>
<td>Public Service Company of North Carolina, Inc.</td>
<td>Virginia Natural Gas, Inc.</td>
</tr>
<tr>
<td>Peoples Gas Light and Coke Company</td>
<td>NSTAR Gas Company</td>
<td>PECO Energy Company</td>
<td>Wyoming Gas Company</td>
</tr>
<tr>
<td>Pike Natural Gas Co</td>
<td>Orange and Rockland Utilities, Inc.</td>
<td>Philadelphia Gas Works Co.</td>
<td></td>
</tr>
</tbody>
</table>
Unlike the industry TFP analysis, which is used to establish the trend in productivity improvement over time, a benchmarking study must reflect the current efficiency of a firm relative to its peers. Therefore, LEI examined only the period of 2014-2017, rather than a longer time series. LEI used four years of data, rather than only one, to ensure that results would not be overly influenced by events or issues that only impacted a single year. Also, four years of data provide more observations, which improves the rigor of the econometric analysis, and makes the results more reliable.

As noted previously, LEI included 82 LDCs in this Total Cost Benchmarking Study. When performing an econometrics analysis, it is not necessary to narrow down the list of peers based on size or business conditions of the Company, because the relevant factors are controlled for in the econometric process.

3.3 The econometric process

An efficient firm produces the maximum output for a given set of inputs; alternatively, it uses the lowest-cost set of inputs (i.e., the lowest total cost) to provide a given level of output.

Total costs depend on the size of the firm, so LEI accounted for the size of each of the firms. And, as discussed in the previous section, there are other independent variables that impact the total cost. This is where the econometrics process plays a significant role. The econometric process uses the economic model (in this case, the translog cost function) and the data, and estimates (based on a statistical process) the impact of each individual driver on the total cost.

For example, the orange line in Figure 7 illustrates a (simplified) econometric result. It traces the average impact of the independent variable (number of customers, in the logarithmic form) on the dependent variable (total cost, in logarithmic form). The blue dots represent the data used in econometrics. Each individual dot represents the number of customers and the total cost for one LDC in the set of companies across a specific timeframe. The line slopes upward, indicating that firms with more customers tend to have higher total costs. This is often referred to as a positive relationship, whereas if the line sloped downward, it would indicate a negative relationship.

12 However, the capital cost component of total cost was derived from longer data series.

13 Figure 7 is simply illustrative; it is not a result of the full translog cost model discussed in the previous section. It shows a very simplified model with only one independent variable, the number of customers, with the data points shown in logarithmic form.
The orange line is generated by the econometrics. It is a prediction. It answers the following question: “given the number of customers, what is the expected (i.e., predicted) total cost for this company?” As can be seen in Figure 7, the orange line does not go through every point in the data – it is simply the line that fits the data set best. The part leftover (the vertical distance between the orange prediction and an individual data point) is known as a residual, which is assumed, in the econometric specification used here, to be fully representative of the efficiency difference between the average hypothetical firm and the individual observation.14

If a firm is below the orange line, its residual is negative, and it is more efficient than average, given the number of customers. If a firm is above the orange line, its residual is positive, which means it has a higher-than-predicted cost, so it is less efficient than average. Companies can then be ranked by how far their actual total cost is above or below the predicted costs. As noted previously, the companies with the lowest (i.e., most negative) difference from the predicted

14 There are other approaches to estimating efficiency, which LEI considered but rejected as less accurate for this dataset—these are discussed in more detail in Appendix A.
value are the most efficient. Companies with the highest (most positive) difference from the predicted value are the least efficient.
4 Benchmarking results and implications

The ultimate purpose of benchmarking using econometrics is to be able to compare a company’s actual cost to its predicted cost while accounting for factors which are outside of the control of management. LEI’s cost benchmarking analysis indicates that the Company is relatively efficient, with actual costs below the predicted costs in three of the four years, based on the econometrics relationship.

To arrive at estimates of predicted values (such as the orange line in Figure 7 above), which are reliable, the econometric model must provide a good fit to the data. LEI’s model has an overall high explanatory power and a good linear fit (see Appendix A for additional details).

The individual coefficient estimates of the model measure the size and direction of the impact of the independent variables on total cost (e.g., akin to the direction of the slope and the steepness of the orange line in Figure 7). The individual coefficient estimates are of less importance in the benchmarking than the overall fit of the model. This is because benchmarking does not require determining elasticities of substitution across inputs, for example, for which precise measurements of individual price impacts are needed. Nonetheless, LEI reports these individual price impacts and their statistical significance in Appendix A.

4.1 Key findings

The total cost benchmarking analysis indicates that the Company is relatively efficient. In three of the four years from 2014 to 2017, NSTAR Gas had actual total costs below those predicted by the econometric model, which indicates that the Company is more efficient than average. The methodology controls for the impact on the cost of firm size (Y_1), input prices (W_1 and W_2), and other business conditions (the various Zs and regional population density) that are captured in the model (as discussed previously).

LEI also constructed a ranking based on the sign and size of the difference between actual cost and predicted costs for all LDCs examined (see Figure 11 on page 27 in Appendix B for the Company’s ranking among U.S. LDCs and Figure 12 on page 29 in Appendix C for the Company’s ranking among Northeast Regional LDCs). As noted previously, companies with the largest negative difference (i.e., average costs lower than predicted) are the most efficient; companies with the largest positive difference (actual costs greater than predicted) are the least efficient. Based on this ranking, the NSTAR Gas ranked top 10 among the Northeast Region LDCs (and in the second quartile of the U.S. LDCs). Figure 8 below illustrates the ranking of 82 U.S. LDCs by their relative efficiency determined by each company’s average residuals over the 2014-2017 timeframe. The most efficient firm during 2014-2017 was almost 60% more efficient.
than average; the least efficient was about 85% worse than average. This is fairly wide range, but such ranges are not uncommon for the results of efficiency studies.\footnote{\textit{Empirical Research in Support of Incentive Rate Setting in Ontario: Report to The Ontario Energy Board.} Pacific Economics Group Research, LLC. May 2013; \textit{Statistical Research for Public Service Company of Colorado’s Multiyear Rate Plan.} Pacific Economics Group Research, LLC. May 2017.}

4.2 Implications of the ranking results

In three of the four years from 2014 through 2017, the Company had actual total costs that were lower than the predicted costs, indicating it is more efficient than average. The Company also ranked in the first quartile of the 29 LDCs in the Northeast Region. Given these conclusions, it is not necessary for the regulator to apply a stretch factor to motivate NSTAR Gas to “catch up”
to the industry average. The Company is already outperforming the majority of the companies in the Northeast Region and across the U.S.
5 Appendix A: Details of the Benchmarking Approach

5.1 Economic foundation of benchmarking analysis: Translog cost function

The basic translog cost function for one output (denoted Y_1), two input prices (denoted W_1 and W_2) and one term (Z) to account for a business condition such pipeline material type takes the form:

$$\ln(TC) = \alpha_0 + \alpha_1 \ln(W_1) + \alpha_2 \ln(W_2) + \alpha_1Y_1 \ln(Y_1) + \alpha_2 \ln(Z)$$
$$+ \frac{1}{2} \gamma_{11} \ln(W_1)^2 + \frac{1}{2} \gamma_{22} \ln(W_2)^2 + \gamma_{12} \ln(W_1) \ln(W_2)$$
$$+ \frac{1}{2} \gamma_{11} \ln(Y_1)^2 + \gamma_{1w1} \ln(Y_1) \ln(W_1) + \gamma_{1w2} \ln(Y_1) \ln(W_2)$$
$$+ \frac{1}{2} \gamma_{2w1} \ln(Z)^2 + \gamma_{2w1} \ln(Z) \ln(W_1) + \gamma_{2w2} \ln(Z) \ln(W_2)$$

Where:
- \ln = the natural logarithm
- TC = total cost
- Y_1 = Y_{cust} = output measured as number of customers
- W_1 = $W_{OM&A}$ = price of OM&A (a combination of labor price and non-labor price)
- W_2 = W_{cap} = price of capital (implied rental price of capital)
- Z = business condition (LEI’s model includes more than one business condition. The equation above is for illustration purpose only)
- α, γ = coefficients to be estimated using econometrics.

If LEI defined the cost share of input i as $S_i = W_i * X_i / TC$ (and X_i=the amount of the input) subject to cost-minimizing behavior, that share will always be equal to the first partial derivative of cost with respect to a change in the input price, W_i.

Using Shephard’s lemma, the cost shares for the OM&A input in the cost equation above can be derived as:

$$S_1 = \frac{\partial \ln(TC)}{\partial \ln(W_1)}$$
$$S_1 = \alpha_1 + \gamma_{11} \ln(W_1) + \gamma_{12} \ln(W_2) + \gamma_{1w1} \ln(Y_1) + \gamma_{2w1} \ln(Z)$$

16 The translog cost function requires interacting the price variables (W_1 and W_2) with the output variables (Y_1) and other variables, so that Y_1 will appear in the share equations. Otherwise the functional form loses its flexibility and one is by default assuming constant elasticities of substitution or some other restrictive form.
Similarly, for the capital input:

\[S_2 = \frac{\partial \ln(TC)}{\partial \ln(W_2)} \]

\[S_2 = \alpha_2 + \gamma_{22}\ln(W_2) + \gamma_{12}\ln(W_1) + \gamma_{2w2}\ln(Y_1) + \gamma_{z2w2}\ln(Z). \]

5.2 The econometric process

To estimate the translog function using econometrics, an error term, \(\xi \), is added to the total cost and share equations. The independent variables and dependent variable are logged and normalized to be suitable for use in the translog cost function model.

To ensure that theoretical requirements for the translog are met, LEI imposed the following constraints on the coefficients, before performing the econometric process:

- \(\Sigma \alpha_i = 1 \) (i.e., the sum of the first-order coefficients on price regressors = 1);
- \(\Sigma \gamma_{ij} = 0 \) (i.e., the sum of the second-order coefficients on the cross-price regressors = 0 when summed over i and when summed over j);
- \(\Sigma \gamma_{iy} = 0 \) (i.e., the sum of the coefficients on the second-order price-output regressors = 0 when summed over output y); and
- Symmetry of the second-order coefficients requires \(\gamma_{ij} = \gamma_{ji} \).

These constraints amount to eliminating one of the share equations for the purposes of the econometric process. The econometric process entailed estimating the cost function and one share equation simultaneously.

LEI used the econometric process known as “iterative seemingly unrelated regression” to estimate the model. All work was performed in Stata. This technique enables more precise estimates of the coefficients than the estimation of each equation separately.

5.3 Econometric results

5.3.1 Overall explanatory power of the model is significant

The overall explanatory power of the model is reflected in its F-statistic. In general, an F-statistic is a ratio of two quantities that are expected to be roughly equal under the null hypothesis (i.e., if the model explains none of the variations of the dependent variable). In that case, the calculation produces an F-statistic of approximately one (1). The further away from 1, the more the model explains. The F-statistic of LEI’s model is 1025.35 (see Figure 9). The F-statistic required for 99% confidence for a model with 328 observations and 19 parameters is...
about 1.9; the F-statistic is much higher, indicating that LEI can be more than 95% confident that the model as a whole explains total cost very well.

Figure 9. Overall explanatory power of the model

<table>
<thead>
<tr>
<th>Equation</th>
<th>Observation</th>
<th>Parameters</th>
<th>R-sq</th>
<th>F-Stat</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>lnTC</td>
<td>328</td>
<td>19</td>
<td>0.98</td>
<td>1025.35</td>
<td>0.000</td>
</tr>
<tr>
<td>S1</td>
<td>328</td>
<td>5</td>
<td>0.28</td>
<td>25.89</td>
<td>0.000</td>
</tr>
</tbody>
</table>

5.3.2 Linear fit of the model is good

The coefficient of correlation ("R^2") measures the dispersion of the data around the line-of-best-fit. The R^2 value for any line-of-best-fit will range from 1 (if all the data points are exactly on the line-of-best-fit, i.e., a perfect correlation) to as low as 0 (if the data are so dispersed, noisy, or have an intrinsically non-linear relationship to the dependent variable). An R^2 of 0 implies that there is no correlation that can be explained by the line-of-best-fit. Keep in mind that the R^2 statistic does not measure the relationship between the dependent variable and independent variables. It simply measures the dispersion of the data around the line-of-best-fit.

The R^2 for LEI’s model is very high, at 0.98 (see Figure 9). The high R^2 is the result of including the output variable Y1 in the model. LEI tested an alternative model in which Y1 was omitted, and the R^2 fell substantially. Of course, the output is a crucial driver of the total cost, so such an independent variable obviously belongs in a total cost analysis.

LEI conducted other tests of model statistical and theoretical performance, and the results of these tests indicated that the model was properly formulated.

5.3.3 Coefficient estimates and their individual statistical significance

The individual coefficient estimates are of less importance in benchmarking than the overall fit of the model. This is because LEI is not attempting to determine elasticities of substitution across inputs, for example, for which precise measurements of individual price impacts are needed. However, as a matter of record, LEI reports the individual coefficient estimates and their statistical significance (see Figure 10). The regressors with probability value (“p-value”) of 0.05 or less are statistically significant at a 95% or higher confidence level. This means one can be at least 95% confident that the coefficient estimate (for example, the 1.38 for lnY1 in Figure 10) is accurate and not the result of random sampling error or statistical noise.

The coefficient estimates measure the impact of each regressor on the dependent variable (total cost). Because the regression is conducted with logged and normalized data, the meaning and
units of these estimates are not intuitive. These coefficients can be combined algebraically to arrive at elasticities of substitution, but that is beyond the scope of a benchmarking analysis such as this. LEI does, however, comment on the signs of the coefficients, and whether or not they are statistically significant. Several explanatory variables were not statistically significant, but LEI did not remove them from the regression model. This is because, in a panel dataset such as the one used in this study, sometimes there is not enough variation in an independent variable to generate a statistically significant coefficient estimate. Therefore, for the purposes of ranking, there is not enough differentiation across firms. However, such an outcome does not mean the variable should be removed from the model - it could still be an important driver of cost for an individual firm. Given that, LEI retained several explanatory variables in the model, which were not statistically significant. The coefficient estimates for all the variables were:

- **W₁** is the price of OM&A inputs (labor and materials). It is negative and not statistically significant at the 95% level;

- **W₂** is the implied rental price of capital. It is positive and not statistically significant at the 95% level\(^{17}\);

- **Y₁** is the total number of customers who have their gas delivered using the LDC’s system. It has a positive coefficient, meaning the more customers a utility has, the higher its total cost will be. It is statistically significant at the 95% level;

- **Z₁** is the percentage of the net increase in miles of mains in the past ten years. This is an indicator of the age of the LDC system. The coefficient on Z₁ is positive but not statistically significant. Z₁ probably has opposite effects on OM&A costs versus capital costs (a newer pipeline system may have lower OM&A costs, but may have higher capital costs, as noted in other LDC benchmarking studies)\(^{18}\);

- **Z₂** is the percentage of mains which are not bare steel or cast iron. This coefficient has a negative sign but is not statistically significant. Z₂ probably has an ambiguous effect on the utility’s total costs, as a utility with a higher percentage of non-bare-steel and non-cast-iron mains may have lower OM&A costs but have invested more in the capital for upgrading the system, and thus have a higher capital cost;

\(^{17}\) Note that economic theory requires the sum of the coefficients for W₁ and W₂ to equal 1, as imposed by the constraints shown previously.

• *Z₃ is the percentage of residential customers.* Z₃ has a positive coefficient (indicating the impact on cost is potentially large) but is not statistically significant because it does not vary much across the companies;

• *InPPL_Dens is regional-level population density.* It is standard practice to ensure that only differences in costs at the firm level are attributed to greater or less efficiency. Therefore, other impacts on costs need to be controlled. LEI tested several variables across regions (Northeast, Midwest, South, and West) of the country, including weather (heating degree days), and population density to examine whether an LDC’s location in the country had an impact on cost. The population density variable best-captured differences across the regions. This variable could have ambiguous directional impacts on the total costs for LDCs. On the one hand, it can reflect the difficulty of building energy infrastructure in densely populated areas, which in turn may make it harder to get infrastructure projects completed. Projects can take longer and need more permits, which increase costs, but such an impact is not captured in the price of capital or price of OM&A. On the other hand, delivering gas in a highly-populated area requires less infrastructure per customer, which may imply lower costs for LDCs. The results of the econometrics indicate that the cost-increasing effect dominates because the sign of the coefficient is positive and statistically significant at the 95% level.

• *InCus_Dens is the customer density of a utility’s service territory.* The coefficient of this variable is positive and statistically significant at the 95% level, meaning a utility that has a higher customer density tends to have higher costs.
Figure 10. Coefficient estimates for total cost function and statistical significance

| InTC | Coef. | Std. Err. | t | P>|t| | [95% Conf. Interval] |
|------------|--------|-----------|-------|-----|----------------------|
| lnW1 | -0.91 | 1.17 | -0.77 | 0.44 | -3.21, 1.40 |
| lnW2 | 1.91 | 1.17 | 1.62 | 0.11 | -0.40, 4.21 |
| lnY1 | 1.38 | 0.10 | 13.65 | 0.00 | 1.18, 1.58 |
| lnZ1 | 1.26 | 1.68 | 0.75 | 0.45 | -2.04, 4.56 |
| lnZ2 | -4.65 | 13.15 | -0.35 | 0.72 | -30.47, 21.17 |
| lnZ3 | 5.24 | 16.14 | 0.32 | 0.75 | -26.45, 36.93 |
| lnW1W1 | 0.21 | 0.40 | 0.53 | 0.60 | -0.57, 1.00 |
| lnW2W2 | 0.21 | 0.40 | 0.53 | 0.60 | -0.57, 1.00 |
| lnW1W2 | -0.21 | 0.40 | -0.53 | 0.60 | -1.00, 0.57 |
| lnY1Y1 | -0.01 | 0.00 | -1.80 | 0.07 | -0.02, 0.00 |
| lnY1W1 | -0.09 | 0.01 | -9.74 | 0.00 | -0.11, -0.07 |
| lnY1W2 | 0.09 | 0.01 | 9.74 | 0.00 | 0.07, 0.11 |
| lnZ1Z1 | -0.01 | 0.01 | -1.36 | 0.18 | -0.03, 0.01 |
| lnZ1W1 | -0.03 | 0.02 | -1.57 | 0.12 | -0.06, 0.01 |
| lnZ1W2 | 0.52 | 0.74 | 0.69 | 0.49 | -0.95, 1.98 |
| lnZ2Z2 | -0.58 | 0.51 | -1.12 | 0.26 | -1.58, 0.43 |
| lnZ2W1 | -0.55 | 0.10 | -5.49 | 0.00 | -0.74, -0.35 |
| lnZ2W2 | -2.64 | 5.93 | -0.45 | 0.66 | -14.29, 9.01 |
| lnZ3Z3 | 2.07 | 5.18 | 0.40 | 0.69 | -8.09, 12.24 |
| lnZ3W1 | 2.03 | 0.44 | 4.66 | 0.00 | 1.18, 2.89 |
| lnZ3W2 | 5.05 | 6.54 | 0.77 | 0.44 | -7.78, 17.89 |
| lnPPL_Dens | 0.21 | 0.02 | 8.29 | 0.00 | 0.16, 0.26 |
| lnCus_Dens | 0.14 | 0.05 | 2.94 | 0.00 | 0.05, 0.24 |
| _cons | 6.00 | 4.82 | 1.25 | 0.21 | -3.46, 15.47 |

5.3.4 Alternative econometric approaches considered

In the approach used by LEI, there is a stochastic component in the residual (think of it as random noise) as well as an efficiency component. LEI assumes that the random noise component impacts each firm equally so that it can be ignored for purposes of benchmarking firms.

There are other approaches to measuring efficiency using econometrics. LEI considered them, but each had drawbacks:
1. **Corrected ordinary least squares (“COLS”)** is a partly deterministic and partly statistical technique which identifies a cost frontier (rather than an average cost function) by identifying the observation (a single firm, in a single year) with the maximum negative residual in a cost function regression and using that residual to shift the whole cost function. The implicit assumption is that all observed deviations from the frontier are due to firm inefficiency. However, this technique ignores random noise or measurement error and can be unduly influenced by outliers.

2. **Stochastic frontier analysis (“SFA”)** allows estimation of a cost function directly with two components in the residual, one for random noise, and the other for efficiency. SFA is only reliable in a large sample, i.e., as the time series feature of the panel approaches a very large number of years. As LEI used only four years of data (to capture recent cost efficiency), this approach was not appropriate.

3. **Fixed-effects (“FE”) estimation** includes a dummy variable which allows intercept terms to be estimated for each firm. These firm-specific intercepts are interpreted as differences in efficiency. However, FE results are sometimes dependent on the size of the firm (even in a cost function which controls for firm size) so that a larger firm will necessarily appear more inefficient than a smaller one. For this reason, LEI decided this approach was not appropriate.

4. **Random-effects (“RE”) estimation** is similar to FE but allows the firm-specific effect to be a random variable rather than a fixed coefficient. This has the same drawback as the FE approach; it also requires a long time series for reliable results. Consequently, LEI decided to not use this approach.

With the above considerations, LEI used the approach by which relative firm efficiency was estimated using the residuals of the translog cost function. LEI tested whether the residuals were correlated with the size of the firm. They were not, which implies that the residuals provide a comparison across firms which does not disadvantage large firms.
6 Appendix B: Full list of efficiency rankings for 82 LDCs in the U.S.

Figure 11. LEI's ranking of 82 U.S. LDCs (average of ranking 2014-2017)

<table>
<thead>
<tr>
<th>Company</th>
<th>State</th>
<th>Region</th>
<th>Number of Customers (2017)</th>
<th>Rankings in the U.S. Average</th>
<th>Ranking</th>
<th>Quartile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmos Energy Corporation</td>
<td>TX</td>
<td>SO</td>
<td>3,126,009</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Texas Gas Service Company, Inc.</td>
<td>TX</td>
<td>SO</td>
<td>656,470</td>
<td></td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cheyenne Light, Fuel and Power Company</td>
<td>WY</td>
<td>WE</td>
<td>36,754</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Public Service Electric and Gas Company</td>
<td>NJ</td>
<td>NE</td>
<td>1,832,201</td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Black Hills Energy Arkansas, Inc.</td>
<td>AR</td>
<td>SO</td>
<td>166,754</td>
<td></td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Pike Natural Gas Co</td>
<td>OH</td>
<td>MW</td>
<td>7,370</td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Eastern Natural Gas Company</td>
<td>OH</td>
<td>MW</td>
<td>6,601</td>
<td></td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>Midwest Natural Gas Corporation</td>
<td>IN</td>
<td>MW</td>
<td>15,351</td>
<td></td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Ohio Gas Company</td>
<td>OH</td>
<td>MW</td>
<td>49,432</td>
<td></td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Mountaineer Gas Company</td>
<td>WV</td>
<td>SO</td>
<td>216,598</td>
<td></td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Columbia Gas of Kentucky, Incorporated</td>
<td>KY</td>
<td>SO</td>
<td>135,734</td>
<td></td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>Wisconsin Power and Light Company</td>
<td>WI</td>
<td>MW</td>
<td>188,117</td>
<td></td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Midwest Natural Gas, Inc.</td>
<td>WI</td>
<td>MW</td>
<td>16,685</td>
<td></td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>Spire Missouri Inc.</td>
<td>MO</td>
<td>MW</td>
<td>1,164,174</td>
<td></td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Brooklyn Union Gas Company</td>
<td>NY</td>
<td>NE</td>
<td>1,249,659</td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Public Service Company of North Carolina, Incorporated</td>
<td>NC</td>
<td>SO</td>
<td>552,993</td>
<td></td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Pike County Light and Power Company</td>
<td>PA</td>
<td>NE</td>
<td>1,215</td>
<td></td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>Consolidated Edison Company of New York, Inc.</td>
<td>NY</td>
<td>NE</td>
<td>1,077,472</td>
<td></td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>Illinois Gas Company</td>
<td>IL</td>
<td>MW</td>
<td>9,462</td>
<td></td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>Bluefield Gas Company</td>
<td>WV</td>
<td>SO</td>
<td>3,386</td>
<td></td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>Northern States Power Company - WI</td>
<td>WI</td>
<td>MW</td>
<td>113,793</td>
<td></td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>Baltimore Gas and Electric Company</td>
<td>MD</td>
<td>SO</td>
<td>673,937</td>
<td></td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Louisville Gas and Electric Company</td>
<td>KY</td>
<td>SO</td>
<td>324,488</td>
<td></td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>Northern Illinois Gas Company</td>
<td>IL</td>
<td>MW</td>
<td>2,217,017</td>
<td></td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>The East Ohio Gas Company</td>
<td>OH</td>
<td>MW</td>
<td>1,186,786</td>
<td></td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Madison Gas and Electric Company</td>
<td>WI</td>
<td>MW</td>
<td>156,577</td>
<td></td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>Vermont Gas Systems, Inc.</td>
<td>VT</td>
<td>NE</td>
<td>51,027</td>
<td></td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>San Diego Gas & Electric Company</td>
<td>CA</td>
<td>WE</td>
<td>880,387</td>
<td></td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>Kansas Gas Service Company, Inc.</td>
<td>KS</td>
<td>MW</td>
<td>638,049</td>
<td></td>
<td>29</td>
<td>2</td>
</tr>
<tr>
<td>Wisconsin Gas LLC</td>
<td>WI</td>
<td>MW</td>
<td>626,570</td>
<td></td>
<td>30</td>
<td>2</td>
</tr>
<tr>
<td>NSTAR Gas Company</td>
<td>MA</td>
<td>NE</td>
<td>291,213</td>
<td></td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>UGI Utilities, Inc.</td>
<td>PA</td>
<td>NE</td>
<td>384,728</td>
<td></td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>Sierra Pacific Power Company</td>
<td>NV</td>
<td>WE</td>
<td>163,591</td>
<td></td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>Atlanta Gas Light Company</td>
<td>GA</td>
<td>SO</td>
<td>1,577,838</td>
<td></td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>PECO Energy Company</td>
<td>PA</td>
<td>NE</td>
<td>519,473</td>
<td></td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>National Fuel Gas Distribution Corporation</td>
<td>NY</td>
<td>NE</td>
<td>744,885</td>
<td></td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>Columbia Gas of Ohio, Inc.</td>
<td>OH</td>
<td>MW</td>
<td>1,439,462</td>
<td></td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>Southern Indiana Gas and Electric Company</td>
<td>IN</td>
<td>MW</td>
<td>113,445</td>
<td></td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>New Jersey Natural Gas Company</td>
<td>NJ</td>
<td>NE</td>
<td>534,425</td>
<td></td>
<td>39</td>
<td>2</td>
</tr>
<tr>
<td>Southern Connecticut Gas Company</td>
<td>CT</td>
<td>NE</td>
<td>196,147</td>
<td></td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>Columbia Gas of Pennsylvania, Inc.</td>
<td>PA</td>
<td>NE</td>
<td>426,527</td>
<td></td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>Company</td>
<td>State</td>
<td>Region</td>
<td>Number of Customers (2017)</td>
<td>Rankings in the U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>--------</td>
<td>---------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Indiana Public Service Company</td>
<td>IN</td>
<td>MW</td>
<td>820,527</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Questar Gas Company</td>
<td>UT</td>
<td>WE</td>
<td>990,924</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colonial Gas Company</td>
<td>MA</td>
<td>NE</td>
<td>207,713</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Jersey Gas Company</td>
<td>NJ</td>
<td>NE</td>
<td>380,764</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fillmore Gas Company, Inc.</td>
<td>NY</td>
<td>NE</td>
<td>1,245</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virginia Natural Gas, Inc.</td>
<td>VA</td>
<td>SO</td>
<td>296,062</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hope Gas, Inc.</td>
<td>WV</td>
<td>SO</td>
<td>111,607</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liberty Utilities (EnergyNorth Natural Gas) Corp.</td>
<td>NH</td>
<td>NE</td>
<td>91,615</td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corning Natural Gas Corporation</td>
<td>NY</td>
<td>NE</td>
<td>14,778</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niagara Mohawk Power Corporation</td>
<td>NY</td>
<td>NE</td>
<td>614,718</td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superior Water, Light and Power Company</td>
<td>WI</td>
<td>MW</td>
<td>12,724</td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern California Gas Company</td>
<td>CA</td>
<td>WE</td>
<td>5,744,043</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bay State Gas Company</td>
<td>MA</td>
<td>NE</td>
<td>317,651</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vectren Energy Delivery of Ohio, Inc.</td>
<td>OH</td>
<td>MW</td>
<td>318,054</td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York State Electric & Gas Corporation</td>
<td>NY</td>
<td>NE</td>
<td>266,345</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citizens Gas Fuel Company</td>
<td>MI</td>
<td>MW</td>
<td>17,476</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peoples Gas System</td>
<td>FL</td>
<td>SO</td>
<td>373,672</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana Gas Company, Inc.</td>
<td>IN</td>
<td>MW</td>
<td>592,618</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central Hudson Gas & Electric Corporation</td>
<td>NY</td>
<td>NE</td>
<td>81,143</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duke Energy Kentucky, Inc.</td>
<td>KY</td>
<td>SO</td>
<td>98,448</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumers Energy Company</td>
<td>MI</td>
<td>MW</td>
<td>1,760,212</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio Valley Gas Corporation</td>
<td>IN</td>
<td>MW</td>
<td>24,239</td>
<td>63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston Gas Company</td>
<td>MA</td>
<td>NE</td>
<td>700,052</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UGI Penn Natural Gas, Inc.</td>
<td>PA</td>
<td>NE</td>
<td>170,797</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTE Gas Company</td>
<td>MI</td>
<td>MW</td>
<td>1,255,989</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkshire Gas Company</td>
<td>MA</td>
<td>NE</td>
<td>39,960</td>
<td>67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Gas of Virginia, Incorporated</td>
<td>VA</td>
<td>SO</td>
<td>265,334</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Philadelphia Gas Works Co.</td>
<td>PA</td>
<td>NE</td>
<td>503,607</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange and Rockland Utilities, Inc.</td>
<td>NY</td>
<td>NE</td>
<td>135,078</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyoming Gas Company</td>
<td>WY</td>
<td>WE</td>
<td>6,879</td>
<td>71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Shore Gas Company</td>
<td>IL</td>
<td>MW</td>
<td>160,128</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecticut Natural Gas Corporation</td>
<td>CT</td>
<td>NE</td>
<td>176,853</td>
<td>73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>St. Joe Natural Gas Co, Inc.</td>
<td>FL</td>
<td>SO</td>
<td>2,993</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbia Gas of Maryland, Incorporated</td>
<td>MD</td>
<td>SO</td>
<td>33,267</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pacific Gas and Electric Company</td>
<td>CA</td>
<td>WE</td>
<td>4,494,485</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cascade Natural Gas Corporation</td>
<td>WA</td>
<td>WE</td>
<td>283,471</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeySpan Gas East Corporation</td>
<td>NY</td>
<td>NE</td>
<td>593,036</td>
<td>78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peoples Gas Light and Coke Company</td>
<td>IL</td>
<td>MW</td>
<td>846,670</td>
<td>79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puget Sound Energy, Inc.</td>
<td>WA</td>
<td>WE</td>
<td>820,624</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delta Natural Gas Company, Inc.</td>
<td>KY</td>
<td>SO</td>
<td>34,892</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yankee Gas Services Company</td>
<td>CT</td>
<td>NE</td>
<td>230,058</td>
<td>82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The 82 LDCs included in LEI’s Total Cost Benchmarking Study are the same as the LDCs included in LEI’s Industry TFP Study, except for Avista Corporation, which was taken out due to lack of pipeline data.

*Note: The average ranking reflects the ranking of each firm’s average ranking over the entire timeframe among the 82 U.S. LDCs. It is not the simple average of each firm’s ranking in each year.
Appendix C: Full list of efficiency rankings for 29 LDCs in the Northeast Region

Figure 12. LEI’s ranking of 29 LDCs in the Northeast Region (average ranking of 2014-2017)

<table>
<thead>
<tr>
<th>Company</th>
<th>State</th>
<th>Number of Customers (2017)</th>
<th>Rankings in the Northeast</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Average</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ranking</td>
</tr>
<tr>
<td>Public Service Electric and Gas Company</td>
<td>NJ</td>
<td>1,832,201</td>
<td>1</td>
</tr>
<tr>
<td>Brooklyn Union Gas Company</td>
<td>NY</td>
<td>1,249,659</td>
<td>2</td>
</tr>
<tr>
<td>Pike County Light and Power Company</td>
<td>PA</td>
<td>1,215</td>
<td>3</td>
</tr>
<tr>
<td>Consolidated Edison Company of New York, Inc.</td>
<td>NY</td>
<td>1,077,472</td>
<td>4</td>
</tr>
<tr>
<td>Vermont Gas Systems, Inc.</td>
<td>VT</td>
<td>51,027</td>
<td>5</td>
</tr>
<tr>
<td>NSTAR Gas Company</td>
<td>MA</td>
<td>291,213</td>
<td>6</td>
</tr>
<tr>
<td>UGI Utilities, Inc.</td>
<td>PA</td>
<td>384,728</td>
<td>7</td>
</tr>
<tr>
<td>PECO Energy Company</td>
<td>PA</td>
<td>519,473</td>
<td>8</td>
</tr>
<tr>
<td>National Fuel Gas Distribution Corporation</td>
<td>NY</td>
<td>744,885</td>
<td>9</td>
</tr>
<tr>
<td>New Jersey Natural Gas Company</td>
<td>NJ</td>
<td>534,425</td>
<td>10</td>
</tr>
<tr>
<td>Southern Connecticut Gas Company</td>
<td>CT</td>
<td>196,147</td>
<td>11</td>
</tr>
<tr>
<td>Columbia Gas of Pennsylvania, Inc.</td>
<td>PA</td>
<td>426,527</td>
<td>12</td>
</tr>
<tr>
<td>Colonial Gas Company</td>
<td>MA</td>
<td>207,713</td>
<td>13</td>
</tr>
<tr>
<td>South Jersey Gas Company</td>
<td>NJ</td>
<td>380,764</td>
<td>14</td>
</tr>
<tr>
<td>Fillmore Gas Company, Inc.</td>
<td>NY</td>
<td>1,245</td>
<td>15</td>
</tr>
<tr>
<td>Liberty Utilities (EnergyNorth Natural Gas) Corp.</td>
<td>NH</td>
<td>91,615</td>
<td>16</td>
</tr>
<tr>
<td>Corning Natural Gas Corporation</td>
<td>NY</td>
<td>14,778</td>
<td>17</td>
</tr>
<tr>
<td>Niagara Mohawk Power Corporation</td>
<td>NY</td>
<td>614,718</td>
<td>18</td>
</tr>
<tr>
<td>Bay State Gas Company</td>
<td>MA</td>
<td>317,651</td>
<td>19</td>
</tr>
<tr>
<td>New York State Electric & Gas Corporation</td>
<td>NY</td>
<td>266,345</td>
<td>20</td>
</tr>
<tr>
<td>Central Hudson Gas & Electric Corporation</td>
<td>NY</td>
<td>81,143</td>
<td>21</td>
</tr>
<tr>
<td>Boston Gas Company</td>
<td>MA</td>
<td>700,052</td>
<td>22</td>
</tr>
<tr>
<td>UGI Penn Natural Gas, Inc.</td>
<td>PA</td>
<td>170,797</td>
<td>23</td>
</tr>
<tr>
<td>Berkshire Gas Company</td>
<td>MA</td>
<td>39,960</td>
<td>24</td>
</tr>
<tr>
<td>Philadelphia Gas Works Co.</td>
<td>PA</td>
<td>503,607</td>
<td>25</td>
</tr>
<tr>
<td>Orange and Rockland Utilities, Inc.</td>
<td>NY</td>
<td>135,078</td>
<td>26</td>
</tr>
<tr>
<td>Connecticut Natural Gas Corporation</td>
<td>CT</td>
<td>176,851</td>
<td>27</td>
</tr>
<tr>
<td>KeySpan Gas East Corporation</td>
<td>NY</td>
<td>593,036</td>
<td>28</td>
</tr>
<tr>
<td>Yankee Gas Services Company</td>
<td>CT</td>
<td>230,058</td>
<td>29</td>
</tr>
</tbody>
</table>

Note: The average ranking reflects the ranking of each firm’s average ranking over the entire timeframe among the 29 LDCs in the Northeast Region. It is not the simple average of each firm’s ranking in each year.
8 Appendix D: LEI team’s qualification for the Total Cost Benchmarking Study

LEI has advised on rate design and regulation in the natural gas and electricity industries, for both public and private clients worldwide and has extensive knowledge of the natural gas and electricity sector in New England. Moreover, LEI has performed a broad range of regulatory services for various utilities around the world, including providing regulatory support pertaining to rate cases, TFP studies, benchmarking, and design of service quality indicators over the last two decades. LEI team’s project experience related to performing benchmarking studies include:

- **Prepared a presentation regarding benchmarking in the distribution business**: In this instance, LEI was retained by an industry advocacy group in the electricity industry to provide a presentation on the benchmarking regimes in the electricity industry, which included theory, application, and case studies.

- **Performed corporate costs benchmarking for Ontario Power Generation ("OPG")**: LEI performed an independent benchmarking assessment of OPG’s corporate support costs. In addition to the independent benchmarking analysis, LEI supported OPG through the rate application process, in the preparation of evidence, and provision of expert testimony, supporting OPG in attaining its reasonable costs for the provision of corporate support services.

- **Performed a benchmarking analysis for a major Australian investment bank**: LEI was retained by a major Australian Investment bank to research embedded costs for electric distribution companies, which included benchmark analysis for Emera, Hydro One, and National Grid.

- **Corporate costs benchmarking**: LEI performed an independent benchmarking assessment of a large Canadian generator’s corporate support costs. In addition to the independent benchmarking analysis, supported the utility through its rate application process, in particular in the preparation of evidence, and provision of expert testimony, supporting it in attaining its reasonable costs for the provision of corporate support services.

- **Proposed a benchmarking method to arrive at a reasonable return margin for the Regulated Rate Option service providers**: LEI provided an expert opinion regarding an appropriate return margin for the Regulated Rate Option service providers ("RSP"), which was filed with the Alberta Utilities Commission as evidence in the proceeding to review the RSPs’ current energy price-setting plans ("EPSP"). LEI concluded that a reasonable return margin could be established using a benchmarking method and that
competitive electricity retailers in Alberta were the most appropriate peer set against which to benchmark RRO returns. LEI recommended a comprehensive return margin, expressed in $/MWh, calculated using the average competitive retailer markup as a base and adjusting for customer acquisition costs.

- **Utilizing benchmarking analysis for the cost of capital and capital structure analysis:** LEI advised Jordan's power regulator on the weighted average cost of capital and optimal capital structure for the country’s three distribution companies: EDCO, IDECO, and JEPCO. LEI's work included identifying salient risk factors for the distribution companies, identifying appropriate local and international metrics and benchmarks, developing a usable cost of the capital model, and providing training workshops for local staff. The recommended optimal capital structure was consistent with targeted debt service and interest coverage ratios in line with the rating methodology for distribution companies from the global credit rating agencies.

Dr. Marie Fagan, who led this econometrics-based benchmarking study, is Managing Consultant and Lead Economist at LEI. With over 25 years of experience in research and consulting for the energy sector, Marie’s career has spanned international upstream and downstream oil and gas, global coal, North American gas markets, and North American power markets. Marie has experience as a project manager for complex, multi-year engagements, and has deep experience in econometric analysis.

Some of Marie’s relevant project experience includes:

- **Independent research into the role of Enbridge Line 5 in NGL and crude oil transport in Michigan:** For a non-governmental organization, Marie produced three white papers examining the current and future role of Enbridge Line 5 in Michigan related to three issues: propane supply in Michigan, transportation for crude oil producers in Michigan, and supply of crude oil to Michigan-area refineries. Marie’s analysis of the propane market included a comparative static econometric analysis of the supply and demand for propane in Michigan, explained in non-technical language. The white papers were used by the client in discussions with the Governor of Michigan and other stakeholders.

- **Econometric analysis of crude oil price and income elasticities of demand for Columbia University, Center for Global Energy Policy (“CGEP”):** Marie directed and managed the project, the foundation of which was a detailed econometric analysis of price and income elasticities of oil demand. Marie employed a variety of specifications of econometric models (including static and dynamic models, and symmetric and asymmetric models) and estimated separate models for crude oil, gasoline, and diesel demand. She used country-level data covering 40 years (1977-2016), aggregated into the panel (cross-section and time-series) datasets for OECD, non-OECD, and oil-producing countries. Marie examined and reported the results of econometric tests covering time-
series properties of the data (tests for integration and cointegration), the performance of the logarithmic model specification as compared to an intrinsically non-linear specification, and the pool-ability of cross-sectional data. LEI’s results were provided in a comprehensive report titled “Oil demand: Up the down staircase,” which underwent academic review outside of CGEP. The report will be published by CGEP.

- **Performed a critical review of the methodology and assumptions which underpinned other consultants’ analysis of avoided energy supply costs (“AESC”):** Marie led a careful examination of the economic theory and econometric techniques used by the other consultants to estimate demand-induced price reduction effects (“DRIPE”).