

Eversource 2023 ASO Study Customer Technical Discussion

Western Massachusetts & Greater Boston
Areas

February 15, 2023

Agenda

- Extension of ASO Study Opt In/Opt Out Period
- Technical Data Challenges and Lessons Learned
- Eversource Data and Modeling Requirements for ASO Studies
- Technical Data submission via PowerClerk
- Q&A

Extension of ASO Study Opt In/Opt Out Period

- Based on ASO Study participant feedback and in order to allow time to address technical questions and subsequent model submission, Eversource extended the opt in/opt out timeframe by 2 weeks and moved the schedule back by 2 weeks.
- Eversource continues to take a collaborative approach with customers in order to administrate the studies as efficiently as possible.
- The intent of this extension is to allow customers sufficient time to develop and submit fully-functioning PSCAD models as well as allow Eversource to perform their due diligence in preparation for the 2023 ASO.

Extension of ASO Study Opt In/Opt Out Period

Level 0 PPA Schedule

Due Date	Milestone		
February 24 th	Customers opt in/out		
March 10 th	Customers make payment and submit technical data/models		
March 17 th	Eversource provides model feedback		
March 31st	Cure Period Timeframe for customers to get project's model rectified and any missed requirements as part o good faith effort to meet deadlines		
April 7 th	Eversource provides model acceptance/rejection notice. Customer data models must be fully functioning, otherwise project will not be able to participate in this ASO Study and withdrawn.		

Level 3 PPA Schedule

Due Date	Milestone
February 24 th	Customers opt in/out
March 3 rd	Eversource provides final study cost
March 17 th	Customers make payment and submit technical data/models
March 24 th	Eversource provides model feedback
	<u>Cure Period</u>
April 7 th	Timeframe for customers to get project's modeling rectified and any missed requirements as part of good faith effort to meet deadlines
April 14 th	Eversource provides model acceptance/rejection notice. Customer data models must be fully functioning, otherwise project will not be able to participate in this ASO Study and withdrawn.

Technical Data Challenges and Lessons Learned

Challenges	Lessons Learnt
Lack of or improper PSCAD model documentation provided with PSCAD model submission in PowerClerk. This caused Eversource to take longer time to understand the PSCAD model functionality and at times needed inverter manufacturer support to resolve PSCAD model related questions.	Eversource will now require PSCAD model documentation to be included with the PSCAD model submission
PSCAD Models were submitted in a .exe file format. Due to security reasons, Eversource does not run executable files from an external source. All customers who had submitted PSCAD models in .exe file format had to be informed to re-submit PSCAD models with the appropriate PSCAD file extensions. This resulted in additional time needed to validate PSCAD models.	Eversource will accept PSCAD Models containing the following files: Model documentation (.pdf) – REQUIRED! Site-specific PSCAD case (.pscx) – REQUIRED! Additional PSCAD model files (e.gpslx, .pswx, .obj, .lib, .dll) – as applicable OEM inverter configuration files (e.gtxt, .pmvs, etc.) – as applicable
PSCAD Models were submitted with default parameters and was configured with default parameters by the inverter vendor. These PSCAD models were not configured to match the project one line diagram. Eversource had to spend significant time and effort to configure these PSCAD models to match their one line diagram as part of the PSCAD model validation process.	Eversource will only accept PSCAD models that are configured to be 'site-specific' and the models must match the project one line diagram in order to pass the PSCAD model validation process.

Technical Data Challenges and Lessons Learned

Challenges	Lessons Learnt
The voltage and frequency protection setpoints of the PSCAD model were not configured to match the ISO-NE SRD requirements. Eversource had to set the voltage and frequency setpoints of the PSCAD models to match the ISO-NE SRD resulting in delays in completing the PSCAD model validation process.	Eversource will only accept PSCAD models with all voltage and frequency protection setpoints set as per the ISO-NE mandated protection settings.
PSSE stability models not provided or incorrect for the >5MW DER projects. This caused additional time. For example: REECB1 model is not acceptable	A stability model in standard PSSE Version 34 library format is required for projects 5MW or greater. The PSSE dynamic model file is in .dyr format including inverter stability models and voltage and frequency settings. Please refer to Eversource Model & Technical Data Request List For Affected System Operator (ASO) Transmission Studies for the acceptable PSSE stability models.
BESS Project operating narratives were not clearly provided, such as the charging from the grid capability. Additional time and discussions with the customer needed to provide clarity on BESS operating narrative.	Eversource has formulated a detailed BESS related questionnaire that is to be submitted along with any DER application, thus making the study process more efficient.
PSSE and/or PSCAD models submitted do not match the project one-line diagram. Multiple options of one-line diagrams and models caused confusion and additional time to seek clarity from Customers.	Eversource requests all ASO Study participants to submit consistent technical data, one-line diagram and models for the ONE project option intended for Proposed Plan Application (PPA) approval.

Technical Data Challenges and Lessons Learned

Challenges	Lessons Learnt
Missing and/or unclear information in the project one-line diagram.	Eversource requests all ASO Study participants to provide a stamped one-line diagram with special emphasis on including the following information: Project total size (kW-AC and kWh if applicable) GSU information (impedance, X/R, kVA, voltages, grounding) Rated kVA Impedance %Z X/R Ratio Rated winding voltages Taps (e.g., +/-2 steps, each at 2.5%) Winding configuration (ie. YNd1) Grounding (e.g., Neutral Ground Reactor Rating: 77Ω, X/R=4) Inverter information (make, model, version, quantity, rated kW & kVA) Presence of 32 or 32R directional power relay if applicable Inverter trip settings for frequency and voltage Inverter ride-through settings for frequency and voltage

Steady State Data and Model Requirements

- Steady state powerflow model not required for projects less than 5MW in size
- Steady State Analysis (Powerflow Modelling for Level 3 projects ≥5MW)
 - PSS/E .raw or .idv file extensions, preferred
 - Should be parameterized to represent site-specific equipment at facility
 - As applicable, the powerflow model must represent elements up to and including the point of interconnection such as:
 - Generators
 - Lines
 - Transformers
 - Capacitor/Reactor Banks, if any
 - Buses
 - FACTS/dynamic reactive devices, if any
 - Station service loads, if any

Stability Data and Model Requirements

- Stability dynamic model not required for projects less than 5MW in size.
- Eversource will use DER_A dynamic model for projects less than 5MW in size.
- Stability Analysis (Dynamic Data and Modelling for Level 3 projects ≥5MW)
 - PSS/E .dyr file extension using standard PSS/E library models.
 - Should be parameterized to represent site-specific equipment at facility
 - All elements having a dynamic response shall be included
 - Generators
 - FACTS/dynamic reactive devices, if any

PSCAD Data and Model Requirements

- PSCAD Models are not required for non-inverter based generation
- PSCAD Models are required for all inverter-based generation 1MW and above
- PSCAD Modelling Requirements:
 - Must be site specific
 - Must be in PSCAD v4.5.3 and above format (.pscx, .pslx, .pswx file extensions)
 - Should be parameterized to represent site specific equipment at facility
 - All elements and topology up to and including the point of interconnection must be represented
 - Generators
 - Lines
 - Transformers
 - Capacitor/Reactor Banks, if any
 - Buses
 - FACTS/dynamic reactive devices, if any
 - Station service loads, if any

Eversource Data and Model Requirements

- The Eversource <u>ASO Study Technical Data Requirements</u> are in-line with the ISO-NE Planning Procedure (PP) PP5-6 model requirements.
- For more information on ISO-NE PP5-6 model requirements, please refer to the <u>PP5-6</u>, <u>ISO-NE generator data submittal requirements</u> and <u>ISO-NE</u> <u>Compliance Bulletin on MOD-032 and ISO-NE Model Data Requirements and Reporting Procedures</u>.

Project Technical Data Submission via PowerClerk

Example Data Package – Level 0 & 3 ASO

- One Line Diagram/Design
 - A stamped one-line diagram
- Additional_Attach
 - ESS Questionnaire.xlsx if applicable
- Additional_Attach
 - PSCAD model supplier checklist (see Appendix E)
- Inverter Specification
 - Manufacturer datasheet(s) for inverter(s)
- PSCAD_Model
 - A ZIP file of site-specific PSCAD model & documentation

Note: These requirements reflect the ASO study only and are not intended to capture distribution impact study requirements or others

Example Data Package – Level 0 & 3 ASO

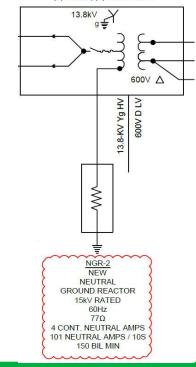
- One Line Diagram/Design
 - A stamped one-line diagram including:
 - Project total size (kW-AC and kWh if applicable)
 - GSU information (impedance, X/R, kVA, voltages, grounding)
 - Inverter information (make, model, version, quantity, rated kW & kVA)
 - Presence of 32 or 32R directional power relay if applicable
 - Inverter trip settings for frequency and voltage
 - Inverter ride-through settings for frequency and voltage

Example Data Package – Level 0 & 3 ASO

- One Line Diagram/Design
 - A stamped one-line diagram including:
 - Project total size (kW-AC and kWh if applicable)

```
SYSTEM SIZE = 11,062.48 kW DC
4,999.00 kW AC NOM.
4,999.00 kW AC MAX.
3,740 kW / 11,220 kWH DC-COUPLED BESS
```

Example Data Package – Level 0 & 3 ASO


- One Line Diagram/Design
 - A stamped one-line diagram including:
 - GSU information
 - Rated kVA
 - Impedance %Z
 - X/R Ratio
 - Rated winding voltages
 - Taps (typical is +/-2 steps, each at 2.5%)
 - Winding configuration (ie. YNd1)
 - Grounding (ie. NGR: 77 ohm, X/R=4)

EVERS©URCE

T-2

NEW 2000KVA
CUSTOMER
TRANSFORMER
IMPEDANCE:
H-X = 5.75% +/H-Y = 5.75% +/X/R = 6.0

5-LEGGED CORE CONSTRUCTION
DUAL SECONDARY WINDING
(FULLY INSULATED H0)
(2) + 2.5%, (2) - 2.5% TAPS

Example Data Package – Level 0 & 3 ASO

- One Line Diagram/Design
 - A stamped one-line diagram including:
 - Inverter information (make, model, version, quantity, rated kW & kVA)

PV INVERTER 1

Inverter Make, Model, & Version

1200-kW NOM 1200-kVA MAX (FACTORY DERATED TO 999.8 kW MAX

Example Data Package – Level 0 & 3 ASO

- One Line Diagram/Design
 - A stamped one-line diagram including:
 - Inverter trip settings for frequency and voltage

Inverter Protective Settings ISO-NE SRD Tables I & II					
INTERNAL PROTECTIVE FUNCTIONS	TRI P OUTPUT	VOLTAGE SETTING PU	SETTING	CLEARING TIME (sec)	
27-1 - UNDERVOLTAGE	X	0.50	300 V	1.1	
27-2 - UNDERVOLTAGE	X	0.88	528 V	2	
59-1 - OVERVOLTAGE	X	1.10	660 V	2	
59-2 - OVERVOLTAGE	X	1.20	720 V	0.16	
81U-1 - UNDERFREQUENCY	X		56.5 Hz	0.16	
81U-2 - UNDERFREQUENCY	X		58.5 Hz	300	
810-1 - OVER FREQUENCY	X		61.2 Hz	300	
810-2 - OVERFREQUENCY	X		62 Hz	0.16	
PRIMARY VOLTAGE (L-L)	0.6	kV	600	V	

Example Data Package – Level 0 & 3 ASO

- One Line Diagram/Design
 - A stamped one-line diagram including:
 - Inverter ride-through settings for frequency and voltage

OPERATI NG MODE / RESPONSE	VOLTAGE SETTING PU RANGE	SETTING (MIN.)	SETTING (MAX.)	MIN. RIDE-THROUGH TIME (sec)	MAX. RESPONSE TI ME (sec)
CEASE TO ENERGIZE	V > 1.2	N/A	720.1 V	N/A	0.16
PERMISSIVE OPERATION	1.175 < V ≤ 1.20	705 V	720 V	0.2	N/A
PERMISSIVE OPERATION	1.15 < V ≤ 1.175	690 V	705 V	0.5	N/A
PERMISSIVE OPERATION	1.10 < V ≤ 1.15	660 V	690 V	1	N/A
CONTINUOUS OPERATION	0.88 ≤ V ≤ 1.10	528 V	660 V	INFINITE	N/A
MAND ATORY OPERATION	0.65 ≤ V < 0.88	390 V	528 V	Linears lope of 8.7 s/ 1p.u. voltage starting at 3 s @ 0.65 p.u.: Twrt = 3 s + 8.7 s/1 p.u. (V-0.65 p.u.)	N/A
PERMISSIVE OPERATION *a,b	0.45 ≤ V < 0.65	270 V	390 V	0.32	N/A
PERMISSIVE OPERATION *b	0.30 ≤ V < 0.45	180 V	270 V	0.16	N/A
CEASE TO ENERGIZE	V < 0.3	179.9 V	N/A	N/A	0.16
Footnote a	In the Permissive	Operation reg		p.u., inverters shall ride-through in M on mode	andatory
Footnote b	In the Permissive Operation region below 0.5 p.u., inverters shall ride-through in Mandatory Cessation mode with a maximum response time of 0.083 seconds.				

Inverter Frequency Ride-Through Settings ISO-NE SRD Table IV					
OPERATING MODE / RESPONSE	FREQUENCY RANGE (Hz)	MIN. RIDE-THROUGH TIN (sec)			
N/A	f > 62.0	N/A			
MANDATORY OPERATION	61.2 < f ≤ 61.8	299			
CONTINUOUS OPERATION	58.8 ≤ f ≤ 61.2	Infinite			
MAND ATORY OPERATION	57.0 ≤ f < 58.8	299			
N/A	f < 57.0	N/A			

Example Data Package – Level 0 & 3 ASO

- Additional_Attach
 - ESS_Questionnaire.xlsx if applicable

Will the site he limiting export? If so identify relay information:

	Energy S	torage System Project Design Inf	ormation Requirement
Application ID #			
Customer Name			
	Street Address		
ESS Location	City/Town		
	Zip Code		
1 Design Docume	ntation		
Please provide b	oth a one-line diagran	n and a site plan as a separate atta	chment to this questionnaire
2 System Configu			
Is the ESS design	n Behind-the-Meter or	Independent Power Producer?	
For B	ehind-the-Meter, will	the site export or be non-export?	
Is the ESS electri	ically connected with [OG or other generation?	
DG T	ype (select from dropo	down list)	
AC or	DC coupled?		

Example Data Package – Level 0 & 3 ASO

- Additional_Attach
 - PSCAD model supplier checklist

Appendix E: PSCAD Model Checklist

This document is a model requirements checklist which must be completed by the supplier of the model and submitted alongside each PSCAD model. Model suppliers must review every item in the checklist and indicate compliance for each item. If the supplied model does not meet any of the requirements an explanation of the deficiency must be provided in the comments column.

Model Submission Summary (to be completed by model supplier)				
Submission date:				
Project Name:				
Primary contact information for				
model related questions:				
Secondary contact information				
for model related questions:				
Manufacturer:				
Equipment type: (eg. PV or BESS)				
Equipment version:				
Documentation file(s):				
Model Files supplied:				

Example Data Package – Level 0 & 3 ASO

- Inverter Specification
 - Sample manufacturer datasheet(s) for inverter(s)

Inverter Make, Model, & Version

Bidirectional Energy Storage & Microgrid PCS

AC	AC configuration max. cables per phase (1) 3-wire (3P3W) 6 x 600 kcmil or 6 x 300 mm ²						
	Nominal AC voltage (+/- 10%) (2)	480 VRMS	600 VRMS	630 VRMS	660 VRMS	690 VRMS	
	Nominal AC current (export/import)			1255 ARMS			
	AC export/import capacity @ 40°C (3)	1043 kW	1304 kW	1369 kW	1435 kW	1500 kW	
	Export power overload capacity @ 40°C, starting from 66% full load.	120 % for 3 sec and 116 % for 5 min					
	Reactive power capacity (4), (5)	Power Factor 0.81 leading/lagging					
	Allowed grid short ckt. current ratios	Current mode: >4 Voltage mode: all					
	Max. fault current allowed from AC source	100 kA (AC RMS) throated version 180 kA (AC RMS) non-throated version					
	Nominal frequency range	50 / 60 Hz (configurable)					
	Harmonic distortion	UL1741 / IEEE 1547, <2% TDDi at rated power per IEEE 519 <3% according to VDE-AR-N 4110/4120 98.8% 98.4% 98.5%					
	Efficiency (@ 690 VAC): Peak CEC Euro						
DC	DC voltage range, maximum (6)	720 - 1500 VDC	900 - 1500 VDC	945 - 1500 VDC	990 - 1500 VDC	1035 - 1500 VDC	
	DC voltage range, at nominal power (6)	761 - 1200 VDC	951 - 1500 VDC	999 - 1500 VDC	1046 - 1500 VDC	1094 - 1500 VDC	
	Recommended minimum battery voltage	1,65 x nominal AC voltage					

Example Data Package – Level 0 & 3 ASO

- PSCAD_Model
 - A ZIP file of site-specific PSCAD model & documentation
 - Model documentation (.pdf) REQUIRED!
 - Site-specific PSCAD case (.pscx) REQUIRED!
 - Additional PSCAD model files (e.g. .pslx, .pswx, .obj, .lib, .dll) as applicable
 - OEM inverter configuration files (e.g. .txt, .pmvs, etc.) as applicable

	3D Object
iblnvControl.obj	3D Object
🔁 PSCAD Model Documentation.pdf	Adobe Acrobat D
iii liblnvControl-i686.lib	Object File Library
Inverter Settings File.pmvs	PMVS File
PSCAD Library.pslx	PSCAD File
PSCAD Site-Specific Test Case.pscx	PSCAD File
PSCAD Workspace.pswx	PSCAD File
PSCAD Library.psmx	PSMX File

Example Data Package – Level 3 ASO < 5MW

Same as level 0 with following additions:

- Cond_Type_Details
 - Conductor type and distances in mile between inverters/GSUs (collection system)
 - Conductor type and length of dedicated feeder to POI in miles (generator tie-line)

MEDIUM VOLTAGE CABLE SCHEDULE					
TAG	COUNT & SIZE	NEUTRAL	INSULATION	CONDUIT	LENGTH +/- 10'
A	(3) 155.4 AAAC	155.4 AAAC	N/A	FREE AIR	40'
B	(3) 250kcmil AL	1/3 CONC.	15kV 100% MV-105	4"	50'
0	(3) 3/0 AL	1/3 CONC.	15kV 100% MV-105	4"	835'
0	(3) 1/0 AL	1/3 CONC.	15kV 100% MV-105	4"	595'

- GSU Details
 - Saturation data

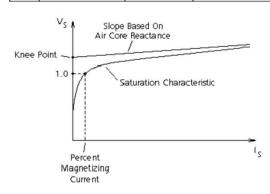
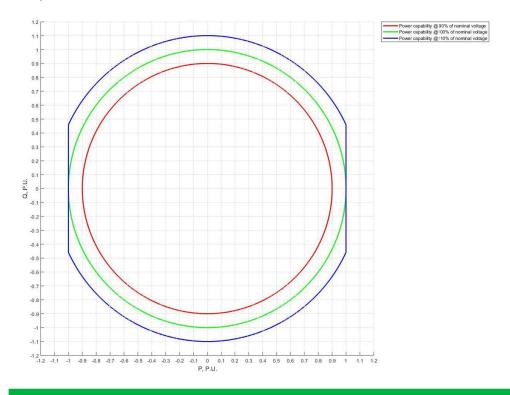


Figure 6-8 -- Typical Classic Core Saturation Characteristic

Example Data Package – Level 3 ASO ≥ 5MW


Same as level 3 < 5MW with following additions:

- Data_Sheet
 - Reactive capability curve or equivalent data
- Stability_Model_List
 - Stability model in PSS/E standard library model format (.idv/.raw/.sav & .dyr) ISO-NE does not accept
 user- written models
 - The following PSSE v34 standard library renewable energy system models shall be used to represent the transient stability of inverter-based DER's:
 - Renewable Energy Generator/Converter Model: REGC_B
 - Renewable Energy Electrical Model: REEC D
 - Plant Controller Model:
 - REPC_A for standalone PV, BESS and PV+DC coupled BESS
 - PLNTBU1 + REAX4BU1 for PV+AC coupled BESS and hybrid-projects which include multiple technologies controlled by a single plant controller

Example Data Package – Level 3 ASO ≥ 5MW

Same as level 3 < 5MW with following additions:

- Data_Sheet
 - Reactive capability curve or equivalent data

Example Data Package – Level 3 ASO ≥ 5MW

Same as level 3 < 5MW with following additions:

- Stability_Model_List
 - .idv or .raw or .sav file:

```
/ END OF SYSTEM-WIDE DATA, BEGIN BUS DATA
                   ', BASKV, IDE, AREA, ZONE, OWNER, VM,
                                                           VA, NVHI, NVLO, EVHI, EVLO
70100, 'BUS POI
                   ', 115.0000,1, 1,
                                             1,1.00360,
                                                        5.7216,1.10000,0.90000,1.10000,0.90000
70101, 'BUS SUB
                    , 115.0000,1, 1, 1,
                                            1,1.00422,
                                                         6.1851,1.10000,0.90000,1.10000,0.90000
70102, 'BUS_COL
                      34.5000,1, 99, 999,
                                            1,1.00122, 11.0458,1.10000,0.90000,1.10000,0.90000
70103, 'TM840 TER
                       4.1600,1, 99, 999,
                                             1,1.00182,
                                                         8.6118,1.10000,0.90000,1.10000,0.90000
70104, 'BUS XFR
                      34.5000,1, 99, 999,
                                             1,1.00172, 11.1031,1.10000,0.90000,1.10000,0.90000
70105, 'BUS GEN
                      0.8000,2, 99, 999,
                                            1,1.00201, 12.7407,1.10000,0.90000,1.10000,0.90000
97000, BUS INF
                   ', 115.0000,3, 1, 1,
                                            1,1.00000, 0.0000,1.10000,0.90000,1.10000,0.90000
 / END OF BUS DATA, BEGIN LOAD DATA
  ...I,'ID',STAT,AREA,ZONE,
                                                                                     YQ, OWNER, SCALE, INTRPT
                                                     IP,
70102, '1', 1, 99, 999,
                              0.004,
                                         0.000,
                                                    0.000,
                                                                         0.000,
                                                                                    0.000, 1, 1, 0,
 / END OF LOAD DATA, BEGIN FIXED SHUNT DATA
   I, 'ID', STATUS, GL,
  END OF FIXED SHUNT DATA, BEGIN GENERATOR DATA
    I, 'ID',
                           QG,
                                                                         MBASE,
                                                                                                ZX,
                                                                IREG,
                                     0.450.
                                               -0.450,1.01000, 70100,
```

.dyr file:

```
70105 'REGCA1' 1
@!/ Lvplsw
   0
                           Brkpt
               Rrpwr
                                       Zerox
                                                    Lvpl1
   0.0200
               0.8000
                           0.9000
                                       0.8800
                                                    1.0000
@!/ Volim
                           Lvpnt0
                                       Iolim
                                                   Tfltr
               Lvpnt1
                           0.0000
   1.0000
               0.0010
                                       -1.0000
                                                    0.0000
@!/ Khv
               Igrmax
                           Igrmin
                                       Accel
```

Q&A